
CS69001 Computing Laboratory – I

EVEN PC Lab Test 2 Date: 12–November–2018

Let A = (a0,a1,a2, . . . ,aN−1) be a shared array of N integers. The prefix sums of A are defined as:

s0 = a0,

s1 = a0 +a1,

s2 = a0 +a1 +a2,

· · ·

sN−1 = a0 +a1 +a2 + · · ·+aN−1.

We want to compute the prefix sums of A in place (that is, in the array A itself). For this, we follow the

recursive procedure discussed now. Break A into two halves, the first (A1) containing the first N1 = ⌊N/2⌋
elements of A, and the second (A2) containing the last N2 = ⌈N/2⌉ = ⌊(N +1)/2⌋ = N − N1 elements

of A. Recursively compute the prefix sums of A1 and A2 in place. Let these be s′0,s
′
1,s

′
2, . . . ,s

′
N1−1 and

s′N1
,s′N1+1,s

′
N1+2, . . . ,s

′
N−1, respectively. The prefix sums of the original array A are then computed as:

si =







s′i if 0 6 i 6 N1 −1,

s′N1−1 + s′i if N1 6 i 6 N −1.

This is not the most efficient way of solving the given problem, but we will use this algorithm only.

Besides N and the initial array elements a0,a1,a2, . . . ,aN−1, the user also specifies a maximum level number

L > 1. Assume that N > 2L+1. Each of the following two parts constructs a full binary tree of processes

with levels 0,1,2, . . . ,L (so there are L+1 levels). The initial process is at the root of the process tree, and

is at level 0. The leaf processes are at level L, and there are 2L of them. The parents of the leaf processes are

at level L−1; there are 2L−1 of them.

In general, for l ∈ {0,1,2, . . . ,L}, there are 2l processes at level l. These are numbered 0,1,2, . . . ,2l−1 from

left to right. This means that the level l and a number i ∈ [0,2l − 1] uniquely identify a process. Denote

this process as Pl,i. With this notation, P0,0 is the root (that is, the initial) process, the leaf processes are

PL,0,PL,1,PL,2, . . . ,PL,2L−1
, and their parent processes are PL−1,0,PL−1,1,PL−1,2, . . . ,PL−1,2L−1−1

.

Part 1

Write a function prefixsum1() with appropriate arguments to define the work of the process Pl,i. Let C

be the chunk of A, that comes to this process, and n the number of elements in the chunk C.

If Pl,i is a leaf process (that is, l = L), it creates no further processes. It instead computes in place the prefix

sums of its chunk C sequentially. After this computation, the process terminates.

If Pl,i is not a leaf process (that is, l < L), the process divides its chunk into two parts C1,C2 consisting of the

first ⌊n/2⌋ and the last ⌈n/2⌉ elements of C. It then forks two processes Pl+1,2i and Pl+1,2i+1, and assigns the

chunks C1 and C2 to them, respectively. The process Pl,i then waits for its two child processes to terminate.

After the wait is over, the process Pl,i computes the prefix sums of its chunk C by the merging formula given

above. Finally, if Pl,i is not the root process (that is, 0 < l < L), it terminates. The root process should return

to the main() function for further work.

The synchronization of a (non-leaf) process with its children is to be achieved by the wait() system calls.

You may design prefixsum1() as an iterative function or as a recursive function.

Part 2

This part is computationally similar to Part 1. That is, the leaf processes PL,i sequentially process their

respective chunks, whereas a non-leaf process Pl,i creates two child processes Pl+1,2i and Pl+1,2i+1, and

when these child processes are done with their computations, Pl,i merges the two subchunks. The difference

is that now a leaf process PL,i does not terminate immediately after processing its chunk C. It keeps on

waiting until the entire array A is updated in place. It then prints its own chunk in the final (fully updated)

array A, and then it terminates. This introduces the following additional synchronization issues.

— Page 1 of 2 —

First, a non-leaf process Pl,i can wait for the termination of its two children so long as 0 6 l 6 L− 2. The

parents of the leaf processes (these are at level L−1) use a separate synchronization mechanism, since the

leaf processes remain alive even after the entire A is updated. When a leaf process is done with the sequential

computation on its chunk, it sends an end-of-work notification to its parent. A process at level L− 1, after

receiving the notifications from both its children, proceeds to its merging task, and then terminates.

Second, we require the chunks of the leaf processes be printed sequentially from left to right (that is, for

i= 0,1,2, . . . ,2L−1 in that order). The synchronization is to be achieved by interacting with the root process

P0,0. When P0,0 finishes merging its two subarrays into the entire array, it wakes up the leaf processes one by

one in the sequence mentioned above. If P0,0 wakes up all the leaf processes at once, the scheduling of the

woken up leaf processes will not be in your control. You must ensure that after P0,0 wakes up a leaf process,

P0,0 waits until the woken up leaf process signals the root process after finishing the printing of its chunk.

Implement these new synchronization requirements using sets of semaphores (not by pipes or any other IPC

mechanism). Write a recursive or iterative function prefixsum2() for implementing Part 2.

The main() function (for the root process only)

• Read N,L, and the array elements a0,a1,a2, . . . ,aN−1 from the user. Recall that A must be stored in

shared memory. Keep a copy of A in a local array B.

• Call prefixsum1() to update A in place. When this function returns, print the updated array A.

• Copy back the local array B to the shared array A.

• Call prefixsum2() to update A in place. This time, the chunk-wise printing is to be done by the leaf

processes, whereas the root process prints nothing.

• Remove all shared-memory segments and semaphore arrays created and used by your program.

Sample output

+++ N = 50

+++ L = 3

+++ Initial array

6 13 -22 13 -20 7 23 21 16 -11 -10 1 7 7 -15

19 5 -20 5 0 -17 -19 24 -11 -18 2 -8 -16 -22 4

-16 13 -3 -14 2 1 17 5 -3 13 18 17 -11 5 -1

-2 -1 -16 2 -21

*** PART 1

+++ Root process: Final array

6 19 -3 10 -10 -3 20 41 57 46 36 37 44 51 36

55 60 40 45 45 28 9 33 22 4 6 -2 -18 -40 -36

-52 -39 -42 -56 -54 -53 -36 -31 -34 -21 -3 14 3 8 7

5 4 -12 -10 -31

*** PART 2

+++ Leaf process 0: Final array segment

6 19 -3 10 -10 -3

+++ Leaf process 1: Final array segment

20 41 57 46 36 37

+++ Leaf process 2: Final array segment

44 51 36 55 60 40

+++ Leaf process 3: Final array segment

45 45 28 9 33 22 4

+++ Leaf process 4: Final array segment

6 -2 -18 -40 -36 -52

+++ Leaf process 5: Final array segment

-39 -42 -56 -54 -53 -36

+++ Leaf process 6: Final array segment

-31 -34 -21 -3 14 3

+++ Leaf process 7: Final array segment

8 7 5 4 -12 -10 -31

Submit one C/C++ file. Write your name, roll no, and PC no as comments in your code.

— Page 2 of 2 —

CS69001 Computing Laboratory – I

ODD PC Lab Test 2 Date: 12–November–2018

Let A = (a0,a1,a2, . . . ,aN−1) be a shared array of N integers. The suffix minima of A are defined as:

sN−1 = aN−1,

sN−2 = min(aN−2,aN−1),

sN−3 = min(aN−3,aN−2,aN−1),

· · ·

s0 = min(a0,a1,a2, . . . ,aN−1).

We want to compute the suffix minima of A in place (that is, in the array A itself). For this, we follow the

recursive procedure discussed now. Break A into two halves, the first (A1) containing the first N1 = ⌊N/2⌋
elements of A, and the second (A2) containing the last N2 = ⌈N/2⌉ = ⌊(N +1)/2⌋ = N −N1 elements of

A. Recursively compute the suffix minima of A1 and A2 in place. Let these be s′0,s
′
1,s

′
2, . . . ,s

′
N1−1 and

s′N1
,s′N1+1,s

′
N1+2, . . . ,s

′
N−1, respectively. The suffix minima of the original array A are then computed as:

si =







s′i if N1 6 i 6 N −1,

min(s′i,s
′
N1
) if 0 6 i 6 N1 −1.

This is not the most efficient way of solving the given problem, but we will use this algorithm only.

Besides N and the initial array elements a0,a1,a2, . . . ,aN−1, the user also specifies a maximum level number

L > 1. Assume that N > 2L+1. Each of the following two parts constructs a full binary tree of processes

with levels 0,1,2, . . . ,L (so there are L+1 levels). The initial process is at the root of the process tree, and

is at level 0. The leaf processes are at level L, and there are 2L of them. The parents of the leaf processes are

at level L−1; there are 2L−1 of them.

In general, for l ∈ {0,1,2, . . . ,L}, there are 2l processes at level l. These are numbered 0,1,2, . . . ,2l−1 from

left to right. This means that the level l and a number i ∈ [0,2l − 1] uniquely identify a process. Denote

this process as Pl,i. With this notation, P0,0 is the root (that is, the initial) process, the leaf processes are

PL,0,PL,1,PL,2, . . . ,PL,2L−1
, and their parent processes are PL−1,0,PL−1,1,PL−1,2, . . . ,PL−1,2L−1−1

.

Part 1

Write a function suffixmin1() with appropriate arguments to define the work of the process Pl,i. Let C

be the chunk of A, that comes to this process, and n the number of elements in the chunk C.

If Pl,i is a leaf process (that is, l = L), it creates no further processes. It instead computes in place the suffix

minima of its chunk C sequentially. After this computation, the process terminates.

If Pl,i is not a leaf process (that is, l < L), the process divides its chunk into two parts C1,C2 consisting of the

first ⌊n/2⌋ and the last ⌈n/2⌉ elements of C. It then forks two processes Pl+1,2i and Pl+1,2i+1, and assigns the

chunks C1 and C2 to them, respectively. The process Pl,i then waits for its two child processes to terminate.

After the wait is over, the process Pl,i computes the suffix minima of its chunk C by the merging formula

given above. Finally, if Pl,i is not the root process (that is, 0 < l < L), it terminates. The root process should

return to the main() function for further work.

The synchronization of a (non-leaf) process with its children is to be achieved by the wait() system calls.

You may design suffixmin1() as an iterative function or as a recursive function.

Part 2

This part is computationally similar to Part 1. That is, the leaf processes PL,i sequentially process their

respective chunks, whereas a non-leaf process Pl,i creates two child processes Pl+1,2i and Pl+1,2i+1, and

when these child processes are done with their computations, Pl,i merges the two subchunks. The difference

is that now a leaf process PL,i does not terminate immediately after processing its chunk C. It keeps on

waiting until the entire array A is updated in place. It then prints its own chunk in the final (fully updated)

array A, and then it terminates. This introduces the following additional synchronization issues.

— Page 1 of 2 —

First, a non-leaf process Pl,i can wait for the termination of its two children so long as 0 6 l 6 L− 2. The

parents of the leaf processes (these are at level L−1) use a separate synchronization mechanism, since the

leaf processes remain alive even after the entire A is updated. When a leaf process is done with the sequential

computation on its chunk, it sends an end-of-work notification to its parent. A process at level L− 1, after

receiving the notifications from both its children, proceeds to its merging task, and then terminates.

Second, we require the chunks of the leaf processes be printed sequentially from left to right (that is, for

i= 0,1,2, . . . ,2L−1 in that order). The synchronization is to be achieved by interacting with the root process

P0,0. When P0,0 finishes merging its two subarrays into the entire array, it wakes up the leaf processes one by

one in the sequence mentioned above. If P0,0 wakes up all the leaf processes at once, the scheduling of the

woken up leaf processes will not be in your control. You must ensure that after P0,0 wakes up a leaf process,

P0,0 waits until the woken up leaf process signals the root process after finishing the printing of its chunk.

Implement these new synchronization requirements using sets of semaphores (not by pipes or any other IPC

mechanism). Write a recursive or iterative function suffixmin2() for implementing Part 2.

The main() function (for the root process only)

• Read N,L, and the array elements a0,a1,a2, . . . ,aN−1 from the user. Recall that A must be stored in

shared memory. Keep a copy of A in a local array B.

• Call suffixmin1() to update A in place. When this function returns, print the updated array A.

• Copy back the local array B to the shared array A.

• Call suffixmin2() to update A in place. This time, the chunk-wise printing is to be done by the leaf

processes, whereas the root process prints nothing.

• Remove all shared-memory segments and semaphore arrays created and used by your program.

Sample output

+++ N = 50

+++ L = 3

+++ Initial array

171 211 532 579 604 1154 758 1193 939 1262 1627 1672 2026 1752 1695

2427 2427 2742 2143 3390 4152 3691 4064 3263 4859 4675 3615 4152 4133 3150

6064 4502 3649 3403 6498 4732 7121 7375 4201 4956 6043 7675 7021 4543 6072

4754 8554 8532 8956 9742

*** PART 1

+++ Root process: Final array

171 211 532 579 604 758 758 939 939 1262 1627 1672 1695 1695 1695

2143 2143 2143 2143 3150 3150 3150 3150 3150 3150 3150 3150 3150 3150 3150

3403 3403 3403 3403 4201 4201 4201 4201 4201 4543 4543 4543 4543 4543 4754

4754 8532 8532 8956 9742

*** PART 2

+++ Leaf process 0: Final array segment

171 211 532 579 604 758

+++ Leaf process 1: Final array segment

758 939 939 1262 1627 1672

+++ Leaf process 2: Final array segment

1695 1695 1695 2143 2143 2143

+++ Leaf process 3: Final array segment

2143 3150 3150 3150 3150 3150 3150

+++ Leaf process 4: Final array segment

3150 3150 3150 3150 3150 3403

+++ Leaf process 5: Final array segment

3403 3403 3403 4201 4201 4201

+++ Leaf process 6: Final array segment

4201 4201 4543 4543 4543 4543

+++ Leaf process 7: Final array segment

4543 4754 4754 8532 8532 8956 9742

Submit one C/C++ file. Write your name, roll no, and PC no as comments in your code.

— Page 2 of 2 —

