
CS69001 Computing Laboratory – I

Assignment No: C1

Date: 03–October–2018

In this assignment, you create process trees simulating two different topologies. Each process in the tree is

given a unique user-defined tag. The root process that you run by executing your code (a.out) is called the

initial process, and is given the first tag. Other processes created by your program obtain their appropriate

tags from their respective parents. Each process must know the tag of itself, and the tags of the child

processes it creates. Define a suitable structure to store the following information against every process.

• The tag of the process.

• The PID (system-generated) of the process.

• The number of child processes that the process forks.

• An array of the tags of the child processes forked.

• An array of the PIDs of the child processes forked.

Write a function dowork() that simulates some work by calling the sleep() or the usleep() function.

This function should sleep for a random duration in the range 1–5 seconds. Write two different programs

for the following parts. If a process with tag T creates a process with tag T ′, we denote this by T −→ T ′.

Part 1: Full binary tree

The user supplies the number d 6 10 of levels in the tree of processes to be created. The initial process

gets tag 1. Other processes get the tags 2,3,4, . . . ,2d
−1 in the level-by-level fashion. The following figure

illustrates the process tree for d = 4. Here, each non-leaf process with tag T forks two child processes with

tags 2T and 2T +1. Leaf processes (those at depth d −1) do not fork any process at all.

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1

Write a function createtree(d) to create a full binary tree of processes with d levels. For each process,

the function returns the information structure (see above) pertinent to that process.

Write a function printinfo() in order to print the data for a process stored in the structure returned by

createtree(). Use a format shown below. For a process, t [p] stands for its tag t followed by its PID p.

Write a function waittree() to be called by every process. The function waits until all the child processes

terminate. After each child termination, the process prints which child (the child tag) has terminated. When

all child processes terminate, the process itself terminates after printing a diagnostic message.

The main() function should call createtree(), printinfo(), dowork(), and waittree() in that

order, and should be the same for all the processes.

Sample output

d = 3

+++ Process 1 [7203]: 2 children: 2 [7204] and 3 [7205]

+++ Process 6 [7206]: 0 children

+++ Process 3 [7205]: 2 children: 6 [7206] and 7 [7207]

+++ Process 7 [7207]: 0 children

+++ Process 4 [7208]: 0 children

+++ Process 5 [7209]: 0 children

+++ Process 2 [7204]: 2 children: 4 [7208] and 5 [7209]

--- Process 6 [7206]: Going to terminate

--- Process 4 [7208]: Going to terminate

--- Process 7 [7207]: Going to terminate

— Page 1 of 2 —



--- Process 5 [7209]: Going to terminate

Process 3 [7205]: Child 6 [7206] terminated

Process 3 [7205]: Child 7 [7207] terminated

--- Process 3 [7205]: Going to terminate

Process 2 [7204]: Child 5 [7209] terminated

Process 1 [7203]: Child 3 [7205] terminated

Process 2 [7204]: Child 4 [7208] terminated

--- Process 2 [7204]: Going to terminate

Process 1 [7203]: Child 2 [7204] terminated

--- Process 1 [7203]: Going to terminate

Part 2: Hypercube

Create a d-dimensional hypercube of processes from the user input of d 6 10. The 4-dimensional hypercube

is shown below. The processes are given d-bit tags. The hypercube is not a tree, and contains additional

edges. The tree edges (the parent-child relationship in the process tree) are shown as arrows, whereas the

additional edges are shown as dotted lines. In this assignment, do not worry about the dotted lines.

0000 0001

0100 0101

0010 0011

0110 0111 1110 1111

11011100

1010 1011

1000 1001

The tags can be identified as d-bit integers (and so are in the range 0 to 2d
−1). The initial process has the

tag 0 (treated as an integer). It creates a child with tag 1. Then, the processes with tags 0,1 fork two child

process (one each) with tags 2,3. Then, the processes 0,1,2,3 create four more child processes (again one

each) with tags 4,5,6,7, and so on.

Write functions createcube(d) and waitcube() similar to those explained in Part 1. Copy the functions

printinfo() and dowork() from Part 1. The main() function (same for each process) should be similar

to that in Part 1. Now, different processes spawn different numbers of children (in the range 0 to d). So each

process must know exactly how many child processes to wait for.

Sample output

d = 3

+++ Process 000 [7915]: 3 children: 001 [7916], 010 [7917], 100 [7918]

+++ Process 100 [7918]: 0 children

+++ Process 010 [7917]: 1 children: 110 [7919]

+++ Process 011 [7920]: 1 children: 111 [7922]

+++ Process 001 [7916]: 2 children: 011 [7920], 101 [7921]

+++ Process 101 [7921]: 0 children

+++ Process 110 [7919]: 0 children

+++ Process 111 [7922]: 0 children

--- Process 100 [7918]: Going to terminate

Process 000 [7915]: Child 100 [7918] terminated

--- Process 101 [7921]: Going to terminate

--- Process 110 [7919]: Going to terminate

Process 001 [7916]: Child 101 [7921] terminated

--- Process 111 [7922]: Going to terminate

Process 010 [7917]: Child 110 [7919] terminated

--- Process 010 [7917]: Going to terminate

Process 000 [7915]: Child 010 [7917] terminated

Process 011 [7920]: Child 111 [7922] terminated

--- Process 011 [7920]: Going to terminate

Process 001 [7916]: Child 011 [7920] terminated

--- Process 001 [7916]: Going to terminate

Process 000 [7915]: Child 001 [7916] terminated

--- Process 000 [7915]: Going to terminate

Submit two C source files. Do not use global/static variables.

— Page 2 of 2 —


