# CS69001 Computing Laboratory - I 

## Assignment No: A1

Date: 30-July-2018

A circle $C$ in the two-dimensional plane is specified by its center $Z=(c, d)$ and radius $r$, where $c, d, r$ are real numbers, and $r \geqslant 0$. Let $C_{1}, C_{2}, C_{3}$ be three circles with centers $Z_{i}=\left(c_{i}, d_{i}\right)$ and radiuses $r_{i}$ for $i=1,2,3$. The goal of this assignment is to compute the area common to the three circles. Solve the following parts to achieve this goal. For simplicity assume that no two centers have the same $x$ - or $y$-coordinate. If $c_{1}<c_{2}$, we say that $C_{1}$ is to the left of $C_{2}$, and $C_{2}$ is to the right of $C_{1}$.

Part 1: Let $P=(x, y)$ be a point on the circle. Its angle $\theta$ can be determined by the built-in math library call atan2 $(\mathbf{y}-\mathrm{d}, \mathrm{x}-\mathrm{c})$ which returns a floating-point value (double) in radian in the range $[-\pi,+\pi]$. Fig 1 illustrates the conventions.

Define a data type point to represent a point (a pair of floating-point coordinates $x$ and $y$ ), and a data type circle to represent a circle (a point $(c, d)$ for the center, and a floating-point radius $r$ ). Write a function getangle ( $\mathrm{C}, \mathrm{P}$ ) to get the angle of a point $P$ on the circle $C$.

Part 2: Let $C_{1}=\left(\left(c_{1}, d_{1}\right), r_{1}\right)$ and $C_{2}=\left(\left(c_{2}, d_{2}\right), r_{2}\right)$ be two circles. Assume that $r_{1} \geqslant r_{2}$ (that is, $C_{1}$ is the bigger circle) -if not, exchange the roles of the two circles. Write a function relpos (C1, C2) to obtain the relative position of the circles. The return value should be one of DISJOINT, INSIDE, and OVERLAP. These three cases are illustrated in Fig 2. Let $d=\sqrt{\left(c_{1}-c_{2}\right)^{2}+\left(d_{1}-d_{2}\right)^{2}}$ be the distance between the two centers. Then, $C_{1}, C_{2}$ are disjoint if $d \geqslant r_{1}+r_{2}, C_{2}$ is completely inside $C_{1}$ if $d \leqslant r_{1}-r_{2}$, and $C_{1}, C_{2}$ are overlapping if $r_{1}-r_{2}<d<r_{1}+r_{2}$.

The conditions $d=r_{1}+r_{2}$ and $d=r_{1}-r_{2}$ stand for the cases when the two circles touch (outside and inside, respectively). You do not have to handle these two cases separately.

These calculations are done by floating-point arithmetic, and may introduce floating-point approximations leading to erroneous answers. If it is known that the center coordinates and the radiuses are integers, you can compare $d^{2}$ with $\left(r_{1}+r_{2}\right)^{2}$ and $\left(r_{1}-r_{2}\right)^{2}$ to ensure exact computations. In order to compute a square $s^{2}$, use $\boldsymbol{s} * \mathbf{s}$ (instead of pow $(\mathbf{s}, 2)$ which uses floating-point arithmetic).

Part 3: Let $C=((c, d), r)$ be a circle, and let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be points on $C$ having angles $\theta_{1}=\tan ^{-1}\left(\left(y_{1}-d\right) /\left(x_{1}-c\right)\right)$ and $\theta_{2}=\tan ^{-1}\left(\left(y_{2}-d\right) /\left(x_{2}-c\right)\right)$ (see Part 1). Consider the arc of the circle from $P_{1}$ to $P_{2}$ in the counterclockwise direction. A segment of the circle is defined by this arc and the straight line segment $P_{1} P_{2}$. Write a function segmentarea (C, P1, P2) to compute and return the area of the (counterclockwise) segment of $C$ from $P_{1}$ to $P_{2}$. See Fig 3 for examples.
Let $\theta=\theta_{2}-\theta_{1}$. If $\theta<0$, add $2 \pi$ to it. Any sector of $C$ extending an angle of $\theta$ has area $A_{1}=\frac{1}{2} \theta r^{2}$. Let the area of the triangle $Z P_{1} P_{2}$ be $A_{2}$ (where $Z=(c, d)$ is the center of $C$ ). If $\theta \leqslant \pi$, then the segment has area $A_{1}-A_{2}$, whereas if $\theta \geqslant \pi$, then the segment has area $A_{1}+A_{2}$.

Part 4: Let $C_{1}, C_{2}$ be overlapping circles. Write a function findintpts ( $\mathrm{C} 1, \mathrm{C} 2, \ldots$ ) to compute the two points $P_{1}, P_{2}$ where $C_{1}$ and $C_{2}$ intersect. These points can be computed as follows. Let the circles have the following equations.

$$
\begin{aligned}
& C_{1}:\left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2}=r_{1}^{2}, \\
& C_{2}:\left(x-c_{2}\right)^{2}+\left(y-d_{2}\right)^{2}=r_{2}^{2} .
\end{aligned}
$$

At the points of intersection, we have

$$
\left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2}-r_{1}^{2}=\left(x-c_{2}\right)^{2}+\left(y-d_{2}\right)^{2}-r_{2}^{2} .
$$

Simplifying gives

$$
2 x\left(c_{1}-c_{2}\right)+2 y\left(d_{1}-d_{2}\right)=\left(c_{1}^{2}-c_{2}^{2}\right)+\left(d_{1}^{2}-d_{2}^{2}\right)+\left(r_{2}^{2}-r_{1}^{2}\right)
$$

We assume that $c_{1} \neq c_{2}$ and $d_{1} \neq d_{2}$. Therefore

$$
y=\left(\frac{c_{2}-c_{1}}{d_{1}-d_{2}}\right) x+\left(\frac{\left(c_{1}^{2}-c_{2}^{2}\right)+\left(d_{1}^{2}-d_{2}^{2}\right)+\left(r_{2}^{2}-r_{1}^{2}\right)}{2\left(d_{1}-d_{2}\right)}\right) .
$$

Plugging this expression for $y$ in the equation of $C_{1}$ or $C_{2}$ gives us a quadratic equation in $x$. Let $x_{1}, x_{2}$ be the two roots of this equation. Correspondingly, we get two unique values $y_{1}, y_{2}$ for $y$ from the linear equation. We have $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$.


Fig 1: $\theta=\operatorname{atan} 2(\mathrm{y}-\mathrm{d}, \mathrm{x}-\mathrm{c})$

(a) Disjoint

(b) Inside

(c) Overlapping

Fig 2: Relative position of two circles


Fig 3: Area of segment
Fig 4: Intersection of two circles


Fig 5: Intersection of three mutually overlapping circles Cases correspond to relative position of intersection arcs

Part 5: Write a function intarea2 ( $\mathrm{C} 1, \mathrm{C} 2$ ) to compute and return the area $A$ common to the two circles $C_{1}=\left(Z_{1}, r_{1}\right)$ and $C_{2}=\left(Z_{2}, r_{2}\right)$ with the centers $Z_{1}=\left(c_{1}, d_{1}\right)$ and $Z_{2}=\left(c_{2}, d_{2}\right)$. Consider the three cases. If $C_{1}, C_{2}$ are disjoint, then $A=0$. If one of $C_{1}, C_{2}$ is completely inside the other, then $A$ is the area of the smaller circle.

The case when $C_{1}$ and $C_{2}$ overlap partially is the complicated one, and is demonstrated in Fig 4. Compute the two intersection points $P_{1}, P_{2}$ of the two circles in this case. Suppose that $C_{1}$ is the left circle and $C_{2}$ the right circle (that is, $c_{1}<c_{2}$ ), and that $P_{1}$ has smaller $y$-coordinate than $P_{2}$. Then, $A$ is the sum of the area of the segment of $C_{1}$ from $P_{1}$ to $P_{2}$ and the area of the segment of $C_{2}$ from $P_{2}$ to $P_{1}$.

Part 6: This is the final goal of this assignment: write a function intarea3 ( $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ ) to compute and return the area $A$ common to three circles $C_{i}=\left(Z_{i}, r_{i}\right)$ with $Z_{i}=\left(c_{i}, d_{i}\right)$ for $i=1,2,3$. Once again, you need to consider several cases. First, if any two of the given circles are disjoint, then $A=0$. Second, if one of the circles is completely inside a second, then $A$ is the area common to the contained and the remaining circles.

Finally, consider the complicated case that any two of the three circles overlap partially with one another. This case has several sub-cases as illustrated in Fig 5. Suppose that $C_{1}, C_{2}, C_{3}$ are sorted with respect to their $x$-coordinates. In particular, $C_{1}$ is the circle with the smallest $x$-coordinate.

Let the intersection points of $C_{1}, C_{2}$ be $Q_{1}, Q_{2}$ with $y\left(Q_{1}\right)<y\left(Q_{2}\right)$. Denote by $\alpha_{2}$ the counterclockwise arc of $C_{1}$ from $Q_{1}$ to $Q_{2}$. Likewise, let $C_{1}, C_{3}$ intersect at points $Q_{3}, Q_{4}$ with $y\left(Q_{3}\right)<y\left(Q_{4}\right)$. Also, let $\alpha_{3}$ denote the arc of $C_{1}$ from $Q_{3}$ to $Q_{4}$. The different cases of Fig 5 correspond to the relative positions of the arcs $\alpha_{2}$ and $\alpha_{3}$. We also need the points of intersection $Q_{5}, Q_{6}$ of the circles $C_{2}, C_{3}$.

The following three cases can be recognized by the angles $\theta_{i}$ of $Q_{i}$ for $i=1,2,3,4$ in $C_{1}$. Ensure three conditions: (i) $\theta_{1}<\theta_{2}$, (ii) $\theta_{3}<\theta_{4}$, and (iii) the four angles $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ lie in a band of width $2 \pi$. In case of violations of these conditions, add $2 \pi$ to appropriate angles. For example, suppose that atan2 returns $\theta_{1}=5 \pi / 6, \theta_{2}=\pi / 3, \theta_{3}=\pi / 6$, and $\theta_{4}=2 \pi / 3$. This is Case 1 (partial overlap). But since $\theta_{1}>\theta_{2}$, we change $\theta_{2}=2 \pi+\pi / 3=7 \pi / 3$. But $\theta_{3}<\theta_{4}$, so we do not change $\theta_{4}$. But then, the $\operatorname{arcs} \alpha_{2}=[5 \pi / 6,7 \pi / 3]$ and $\alpha_{3}=[\pi / 6,2 \pi / 3]$ appear disjoint (Case 2). This problem happened because $\theta_{2}-\theta_{3}=7 \pi / 3-\pi / 6=13 \pi / 6>2 \pi$. So change $\theta_{3}=\pi / 6+2 \pi=13 \pi / 6$ and $\theta_{4}=2 \pi / 3+2 \pi=8 \pi / 3$.

Case 1: $\alpha_{2}$ and $\alpha_{3}$ overlap partially (Part (a) of Fig 5). This means that the intersection points with $C_{1}$ appear in one of the two sequences $Q_{3}, Q_{1}, Q_{4}, Q_{2}$ or $Q_{1}, Q_{3}, Q_{2}, Q_{4}$ in the increasing order of their angles relative to the center of $C_{1}$. Take $P_{1}, P_{2}$ to be the middle two points in this sequence, that is, $\left(P_{1}, P_{2}\right)=\left(Q_{1}, Q_{4}\right)$ or $\left(P_{1}, P_{2}\right)=\left(Q_{3}, Q_{2}\right)$. Look at the points $Q_{5}, Q_{6}$ defined above. One of these points is inside $C_{1}$, the other is outside $C_{1}$. Call $P_{3}$ the point which is inside $C_{1}$. The intersection area $A$ of $C_{1}, C_{2}, C_{3}$ is that of the region $P_{1} P_{2} P_{3}$ bounded by the three $\operatorname{arcs} P_{1} P_{2}, P_{2} P_{3}$, and $P_{3} P_{1}$ of the three circles, and can be computed by adding the three segments areas and the area of the triangle $P_{1} P_{2} P_{3}$.

Case 2: $\alpha_{2}$ and $\alpha_{3}$ are disjoint (Part (b) of Fig 5). In this case, the four intersection points with $C_{1}$ form one of the sequences $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ or $Q_{3}, Q_{4}, Q_{1}, Q_{2}$ (sorted by their angles with the center of $C_{1}$ ). If both $Q_{5}$ and $Q_{6}$ are inside $C_{1}$, the area $A$ is the area of intersection of $C_{2}$ and $C_{3}$ (see Part (b)(i)). If both $Q_{5}$ and $Q_{6}$ are outside $C_{1}$ (see Part (b)(ii)), then $A=0$.

Case 3: One of $\alpha_{2}, \alpha_{3}$ is completely contained in the other (Part (c) of Fig 5). Here, the sequence of intersection points is either $Q_{3}, Q_{1}, Q_{2}, Q_{4}$ or $Q_{1}, Q_{3}, Q_{4}, Q_{2}$. As in Case 1, take $P_{1}, P_{2}$ to be the middle two points of intersection in this sequence. We again consider the points $Q_{5}, Q_{6}$. If both are outside $C_{1}$ (see Fig 5(c)(i)), the desired area $A$ is the intersection area of $C_{1}$ and the circle ( $C_{2}$ or $C_{3}$ ) having the smaller arc with $C_{1}$. Finally, if both $Q_{5}$ and $Q_{6}$ are inside $C_{1}$, we have the most complicated situation as illustrated in Fig 5(c)(ii). If $y\left(Q_{5}\right)>y\left(Q_{6}\right)$, take $\left(P_{3}, P_{4}\right)=\left(Q_{5}, Q_{6}\right)$, otherwise take $\left(P_{3}, P_{4}\right)=\left(Q_{6}, Q_{5}\right)$. Now, $A$ is the area of the region $P_{1} P_{2} P_{3} P_{4}$ enclosed by four arcs (two of which belong to circle with the contained arc). So we have to sum the four segment areas and the area of the quadrilateral $P_{1} P_{2} P_{3} P_{4}$ (the sum of the areas of the two triangles $P_{1} P_{2} P_{3}$ and $P_{1} P_{3} P_{4}$ ).

## The main() function

- Read $c_{i}, d_{i}, r_{i}$ from the user. Assume that the user enters integer values for all of these nine quantities. Assume also that the user ensures that no two $x$ - or $y$-coordinates are the same.
- Find the relative positions of the three pairs $\left(C_{1}, C_{2}\right),\left(C_{1}, C_{3}\right)$, and $\left(C_{2}, C_{3}\right)$ by calling relpos thrice.
- For each of these three pairs, if overlapping, compute the two intersection points using findintpts.
- Compute and print the common intersection areas for the three pairs by calling intarea 2 thrice.
- Call intarea3 and print the area common to $C_{1}, C_{2}, C_{3}$.


## Sample output

The following output illustrates Case 5(c)(i). Visit the lab webpage for sample outputs in all possible cases.

```
+++ Input data for three circles
    C1: 2 8 12
    C2: 20 3 19
    C3: 15 18 6
+++ Relative positions of
    C1,C2: OVERLAP
    C1,C3: OVERLAP
    C2,C3: OVERLAP
+++ Intersection points
    Between C1 and C2: ( 8.473393, 18.104216 ) and ( 2.334630, -3.995333 )
    Between C1 and C3: ( 13.213817, 12.272038) and (9.005514, 17.742832 )
    Between C2 and C3: ( 19.478528, 21.992843 ) and ( 9.021472, 18.507157 )
+++ Circle areas
    area(C1) = 452.389342
    area(C2) = 1134.114948
    area(C3) = 113.097336
+++ Intersection areas of two circles
    area(C1,C2) = 202.844761
    area(C1,C3) = 7.465878
    area (C2,C3) = 90.278871
+++ Intersection area of three circles
    area(C1,C2,C3)= 7.465878
```



Submit a single $\mathrm{C} / \mathrm{C}++$ source file. Do not use global/static variables.

