
CS69001: Computing Lab – I
Autumn 2009

Assignment 3

Implementation of Backtracking

Due: August 25, 2009 (Tuesday)

In this exercise, you are required to write a backtracking algorithm for solving the15 puzzle, or more correctly, the
generalizedn2

− 1 puzzle. You start from an arbitrary arrangement of the tiles1, 2, . . . , n2
− 1 in an n × n board

(this leaves exactly one blank square). Your task is to find a sequence of moves that restore the board to the following
configuration (shown forn = 4), henceforth called thefinal configuration.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

For example, here is a sequence of moves:

1 2 3 4
5 6 8
9 10 7 12
13 14 11 15

→

1 2 3 4
5 6 8
9 10 7 12
13 14 11 15

→

1 2 3 4
5 6 7 8
9 10 12
13 14 11 15

→

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

→

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Part 1 (40)

From exactly half of the initial configurations, it is possible to reach the final configuration. Thesesolvableinitial
configurations are characterized as follows. First, write the initial configuration in the row-major order (neglectingthe
blank square). For example, the leftmost configuration in the above example is written as:

1 2 3 4 5 6 8 9 10 7 12 13 14 11 15

Let m denote the number of inversions in this array (that is, the number of pairs(i, j) such thati > j, but i appears
earlier thanj in the array). Also letn denote the width (or height) of the grid. Finally, letr be the index of the row in
the 2-d grid (indexing starts from0 at the top), containing the blank square. The initial configuration is solvable if and
only if one of the following is true.

• If n is odd, thenm is even.
• If n is even, thenm + r is odd.

For example, all the inversions in the above flattened array are (8, 7), (9, 7), (10, 7), (12, 11), (13, 11) and(14, 11), that
is, m = 6. The row index of the blank square isr = 1. Since the grid sizen = 4 is even, we use the second case.
But m + r = 7 is odd, so the corresponding initial configuration is solvable. A sequence of steps leading to the final
configuration is already shown above.

Write a function that, given a configuration of ann × n board, determines whether that configuration is solvable.

Part 2 (60)

Write a non-recursive function based upon backtracking in order to compute a sequence of moves that change the board
from a given initial configuration to the final configuration (provided that the initial configuration is solvable). In order
to avoid infinite loops in the search, you need to adopt two measures.

• No configuration is repeated on the search path.
• Possibilities of the movement of the blank tile are exploredin a particular order.

You may implement a depth-restricted version of the backtracking procedure, and gradually increase the depth until a
solution is reached. It is known that you may require as many as31 (or 80) moves forn = 3 (or n = 4).

Submit a single C/C++ file solving both the above parts. The file must contain your name and roll number.


