CS69001: Computing Lab - I

Autumn 2009

Assignment 3

Implementation of Backtracking

Due: August 25, 2009 (Tuesday)

In this exercise, you are required to write a backtracking algorithm for solving the 15 puzzle, or more correctly, the generalized $n^{2}-1$ puzzle. You start from an arbitrary arrangement of the tiles $1,2, \ldots, n^{2}-1$ in an $n \times n$ board (this leaves exactly one blank square). Your task is to find a sequence of moves that restore the board to the following configuration (shown for $n=4$), henceforth called the final configuration.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

For example, here is a sequence of moves:

1	2	3	4					
5	6	8						
9	10	7	12					
13	14	11	15	\rightarrow	1	2	3	4
:---:	:---:	:---:	:---:					
5	6		8					
9	10	7	12					
13	14	11	15	\rightarrow	1	2	3	4
:---:	:---:	:---:	:---:					
5	6	7	8					
9	10		12					
13	14	11	15	\rightarrow	1	2	3	4
:---:	:---:	:---:	:---:					
5	6	7	8					
9	10	11	12					
13	14		15	\rightarrow	1	2	3	4
:---:	:---:	:---:	:---:	:---:				
5	6	7	8					
9	10	11	12					
13	14	15						

Part 1

From exactly half of the initial configurations, it is possible to reach the final configuration. These solvable initial configurations are characterized as follows. First, write the initial configuration in the row-major order (neglecting the blank square). For example, the leftmost configuration in the above example is written as:

1	2	3	4	5	6	8	9	10	7	12	13	14	11	15

Let m denote the number of inversions in this array (that is, the number of pairs (i, j) such that $i>j$, but i appears earlier than j in the array). Also let n denote the width (or height) of the grid. Finally, let r be the index of the row in the 2 -d grid (indexing starts from 0 at the top), containing the blank square. The initial configuration is solvable if and only if one of the following is true.

- If n is odd, then m is even.
- If n is even, then $m+r$ is odd.

For example, all the inversions in the above flattened array are $(8,7),(9,7),(10,7),(12,11),(13,11)$ and $(14,11)$, that is, $m=6$. The row index of the blank square is $r=1$. Since the grid size $n=4$ is even, we use the second case. But $m+r=7$ is odd, so the corresponding initial configuration is solvable. A sequence of steps leading to the final configuration is already shown above.

Write a function that, given a configuration of an $n \times n$ board, determines whether that configuration is solvable.

Part 2

Write a non-recursive function based upon backtracking in order to compute a sequence of moves that change the board from a given initial configuration to the final configuration (provided that the initial configuration is solvable). In order to avoid infinite loops in the search, you need to adopt two measures.

- No configuration is repeated on the search path.
- Possibilities of the movement of the blank tile are explored in a particular order.

You may implement a depth-restricted version of the backtracking procedure, and gradually increase the depth until a solution is reached. It is known that you may require as many as 31 (or 80) moves for $n=3$ (or $n=4$).

Submit a single $\mathrm{C} / \mathrm{C}++$ file solving both the above parts. The file must contain your name and roll number.

