CS69003 Computing Systems Lab — I
Autumn 2007

Use of fork, exec and pipe

Due: August 29, 2007

Part 1

Write a multi-process program for the evaluation of simple arithmetic expressions. The parent process
reads expressions from the user and creates a child process for the evaluation of each expression. For
simplicity, restrict the operator to +, —, *, /, % only, and assume that each operand is a positive integer.
The expression is to be provided in the standard infix notation with one operator and two operands only
(for example, 2 + 3,32 * 456, etc.).

The parent process runs a loop. During each iteration of the loop, the parent process creates a pipe for
communication with a child. It then forks a new child process, reads an expression from the user, sends
the expression to the child through the pipe, and waits for the child to terminate. If the child exits with a
non-zero status, the parent process breaks the evaluation loop and terminates.

Each child process, in its turn, reads the expression from the pipe, parses it for obtaining the operator
and the two operands, performs the desired operation, prints the result, and exits. If the operation was
successfully performed by the child process, it exits with status 0, whereas if the evaluation of the
expression fails, a non-zero exit status should be returned to the parent.

Part 2

Write another program that executes standard commands with zero or more pipe directives. The program
gives a prompt and then waits for the user to enter a command. A command is read from the user and
split based on the location(s) of the pipe character(s) appearing in the command. Each part of the
command is then executed by a separate child process. In order to make the pipes in the command work,
one needs to redirect stdin and stdout of the child processes to file descriptors created by the
pipe () system call. The command exit terminates the program.

First, concentrate on commands without pipes and then on commands with only one pipe directive. For
extra credit, modify your program to work for any number of pipes.

You can assume that the commands entered by the user are executable files in the current directory.

Submission

Write a program with the name evalexp.c for the first part of the assignment, and a program with the
name execcmd . c for the second part. Mail both the programs together with the subject line:
“Assignment 4 for 07CS60**”,

Sample output

[abhij@dedekind ass4]$./evalexp
[Enter expression] 34 + 55
Child computes 34 + 55 = 89
[Enter expression]%$ 12345-45678
Child computes 12345 - 45678 -33333
[Enter expression]% 16 35
Child computes 16 * 35 = 560
[Enter expression]%
[abhij@dedekind ass4]$./execcmd
[Enter command]% 1ls -1p
total 52
-rw—-r——r—— 1 abhij abhij 48 Aug 15
-rw-r——-r—— 1 abhij abhij 1074 Aug 14
-rw-r——r—— 1 abhij abhij 2298 Aug 15
-rwxr—-xr—-x 1 abhij abhij 8518 Aug 16
-rw-r——-r—— 1 abhij abhij 3652 Aug 16
-rwxr—-xr-x 1 abhij abhij 9002 Aug 16
-rw—-r——r—— 1 abhij abhij 3617 Aug 16
-rw-r——-r—— 1 abhij abhij 1718 Aug 14
-rw-r——-r—— 1 abhij abhij 3909 Aug 15
[Enter command]% ls -1p grep \.c
-rw-r—--r—— 1 abhij abhij 1074 Aug 14
-rw-r——-r—— 1 abhij abhij 2298 Aug 15
-rw-r——r—— 1 abhij abhij 3652 Aug 16
-rw-r——-r—— 1 abhij abhij 3617 Aug 16
-rw-r--r—— 1 abhij abhij 1718 Aug 14
-rw-r——r—— 1 abhij abhij 3909 Aug 15
[Enter command]% 1ls -1p grep \.c |
-rw-r——-r—— 1 abhij abhij 1074 Aug 14
-rw-r——-r—— 1 abhij abhij 1718 Aug 14
-rw—-r——-r—— 1 abhij abhij 2298 Aug 15
-rw-r——-r—— 1 abhij abhij 3617 Aug 16
-rw-r——r—— 1 abhij abhij 3652 Aug 16
-rw-r——-r—— 1 abhij abhij 3909 Aug 15
[Enter command]% ls -1p grep \.c |
6 54 336
Enter command]% 1ls -1p grep \.c |

[
3
(
(

Enter command]$%
abhij@dedekind ass4]$

exit

03:
23:
02:
16:
16:
16:
16:
23:
02:

23:
02:
16:
16:
23:
02:

11
01
29
21
21
22
21
00
31

01
29
21
21
00
31

sort

23:
23:
02:
16:
16:
02:

01
00
29
21
21
31

sort

sort

challenge.dat
child_nopipe.c
child_pipe.c
evalexp
evalexp.c
execcmd
execcmd.c
parent_nopipe.c
parent_pipe.c

child_nopipe.c
child_pipe.c
evalexp.c
execcmd.cC
parent_nopipe.c
parent_pipe.c

child_nopipe.c

parent_nopipe.c

child_pipe.c

execcmd.c

evalexp.c

parent_pipe.c
\fe

wCc | wc —-w

