CS69003: Computing Systems Lab — |
Autumn 2007

Assignment 3

Implementation of an algorithm for undirected graphs, basal on heap operations
Due: August 17, 2007

Let G = (V, E) be a simple undirected graph withvertices. Thedegree d(v) of a vertexv € V is the
number of nodes adjacent toin G. The degree sequence of G is the sequence of degrees of its vertices
and is unique up to permutations of the vertices. For exantipbedegree sequence of the following graph is
5,2,1,3,2,3.

b Vertex Degree
¢ a 5
b 2
a d c 1
d 3
e 2
f € f 3

Given a representation of a graph, one can easily computedbeee sequence of the graph. In this as-
signment, you solve the converse problem. A finite sequehe®m-negative integers is callegtaphic or
realizable if there exists a simple undirected graph whose degree sequequals the given sequence. For
example, the sequenée2, 1, 3, 2, 3 is graphic and so also is its permutati®ys, 3, 2,2, 1. On the other hand,
the sequencé, 5,4, 3,2, 1 is not graphic, since in a simple graph with six vertices, adex can have degree
> 6. Also the sequencg 4, 3,2,2, 1 cannot be graphic, since the sum of the degrees in the segjissodd.

Write a program that inputs a sequence from a file and comutgaph whose degree sequence equals
the sequence read. If no such graph exists (i.e., if the ispgtience is not graphic), your program should
terminate with an appropriate error message.

Part |

Implement themax-heap data structure. More precisely, provide a suitable typindon for the data
structure heap and implement the insertion and deletiotinesl on data of type heap. Use the following
prototypes. The insert and delete functions must returnrtbdified heaps. A function that returns the root
(i.e., the maximum node) of the heap without deleting thakenshould also be implemented.

heap insert (heap, node); /+* Inset a new node in a heap */
heap del eteMax (heap); /+ Delete the maxi mumfroma heap */
node get Max (heap); [+ Cbtain the maxi mum of a heap wi thout deletion */

Note thatheap is the custom-designed data type as you have declaredre@tiehe other handyode is a
data type containing a key value based on which the heapteuis organized. Since you are going to use
these heap functions for solving the graphic sequence gmyl®acmode may contain additional data items
which are not relevant with respect to the heap property.example, an item in the heap would consist of
the id of a graph vertex and a degree information about thdéxeeach of which can be represented as a
non-negative integer.

Part I

Havel (1955) and Hakimi (1962) proved a necessary and sriticondition for a sequence to be graphic.
This condition immediately leads to a recursive (or itetialgorithm for computing a graph (if existent)
belonging to a given sequence. The condition goes like this.

A sequencel, d-, ...,d, of n non-negative integers witlh, > d» > --- > d,, is graphic if and only if
the sequencé, — 1,ds —1,...,dq,+1 — 1,dg, 42, . .., dy IS graphic.

This result indicates that one creates all the links for aenaith the largest degree and then recursively
computes the rest of the graph. This procedure is illuddriat¢he following figure. We start with the sequence
5,2,1,3,2,3 corresponding to nodes b, ¢, d, e, f. Edges added in each step are shown by dashed lines.

b

a d fe
53 3 2

.o b, ac
o d a Q::—::::—’—’::————o d
o€ f,, e
bc adfebec
2 1 022110

Read a text file storing the numberof nodes followed by a sequence@hon-negative integers. Note
that the input sequence is not necessarily supplied in tbeedsing order. Create a heap based on the degree
values and perform a series of insert and delete operatinrtheoheap so as to obtain a graph, if existent,
corresponding to the input sequence. While printing theatugraph, name the vertices@d, ¢, d, . . . in the
order they are read from the input file.

Example

Consider the following input file.

NDANPFEP WO

The file says that there are five nodes. Nadeas degred, nodeb has degred, and so on. This sequence
happens to be graphic. A sample execution of your progranhisrfite would look like the following.

Heap si ze

[d,

4] [a,

5
3] [c, 2] [b, 1] [e, 2]

CQut put graph

a

Do oTw
R R R OO
Or oo Oo

b

OFrO0OO0ORrRO0
RPORRRE

d

e

OPr OOk

