
 

Assignment 7 
 

TCP Client-server II 
 
Due: November 10, 2006 
 
 

 
1. In this assignment, you will write a simplified online railway reservation system that will require 

you to use sockets, shared memory, and semaphores together.  In the reservation system, each train 
is identified by a train no. (an integer), name (string, one word only), an originating station (string, 
one word only), a terminating station (string, one word only), a departure time (string in format 
hh:mm where hh is 2 digit hour, mm is 2 digit minutes), and an arrival time (string in time format as 
before). For each train, a certain maximum number of available seats are defined (assume all seats 
are of one class only), and users can buy these seats online. There are two types of users. Normal 
users can see the details of a train (search by train number or search by originating and terminating 
station pair), see the number of seats currently available on a train, and book a ticket. Administrative 
users, in addition to being able to do everything that a normal user can do, can also update the 
maximum number of seats on an existing train. Normal users do not require to login into the system, 
but administrative users need to login first.  For simplicity, assume that you are dealing with 
reservation for a single date only, so you need not bother about keeping reservation information for 
different dates. 

 
A normal user of the system that you design should be able to execute the following commands at 
the server.  

• find <train_no> : see the details of the train identified by <train_no>. If there is no 
such train, server should send an appropriate message. 

• find_between <originating station> <terminating station> :  Show details of all 
trains between the two stations. 

• available <train_no>: shows the number of seats currently available on the train 
identified by <train_no> 

• reserve <train_no> <name>: If seats are available in the train identified by 
<train_no>,, a reservation is made in the name of the person with name <name>. 
Assume that names are one word strings. If the reservation is successful, a PNR no. (an 
integer) is given to the client. If unsuccessful, an appropriate message is returned.  

 
An administrative user should also be able to do the following: 

• login <username> <passwd> : logs the user in. <username> and <passwd> are 
strings. The server should check the username-password in a file and returns the string 
“ok” to the client on a match; if no match is found, the server returns the string “login 
failed”. Assume that the server has a file with username–passwords of the valid users of 
the system (prepared manually). If login fails, no further commands are accepted and 
the socket is closed by the server. 

• changemax <train_no> <newmax>: Change the maximum number of seats on the 
train identified by <train_no> to the number identified by <newmax>. The operation 
should fail if <newmax> is less than the currently defined max. seats for that train. 

 
 



Design a client that gives a console based user interface (i.e., no graphical user interface is needed) 
that will first ask the user whether he/she is a normal user or administrator. If a normal user is 
chosen, the user can choose or type in any of the above commands (you can print nice names for the 
commands at the client end if you want.). If an administrative user is chosen, a user-password is 
asked for and the login command is sent to the server. Once a user types in a command and the 
parameters, the client opens a TCP socket connection to the server and sends the command in the 
above format to the server. The result, if any, is displayed in a nice manner. 

 
The server is a concurrent server using TCP. The information is stored in several files. The 
information about the details (name, number, originating and terminating stations, departure and 
arrival time, max. number of seats) of all the trains is stored in one single file. The current 
reservation information of  a particular train is stored in a file with the train no. as its name. So if 
you have x trains, you will have a total of (x +1) files. You can design your own format for storing 
the information in the files.  
 
However, for efficiency reasons, the server, when it starts, loads the details of the trains, and the 
number of seats currently available for each train in shared memory. Design the data structures 
needed for maintaining all the information in the shared memory. The current reservation 
information (who has reserved) of the individual trains is not stored in the shared memory. On a 
client request, a separate process is created to handle the client’s request. All searches (find, 
find_between, and available commands) are answered from the data in the shared memory, the 
files are not accessed at all for this. A reservation/cancellation or a change in the maximum seats in 
a train  (changemax and reserve commands) is done directly in the respective file itself; only 
change in the shared memory in this case is to update the number of available seats in the shared 
memory. You must design appropriate synchronization mechanisms using semaphore to make sure 
reads and writes to any shared memory do not happen simultaneously. 

 
For simplicity, you can assume that the maximum number of trains in your system is 25, and create 
the shared memory accordingly (and hence, you need not worry about dynamic allocation of shared 
memory for this assignment). The train information to test your program with will be put up on the 
course website shortly. 

 


	Assignment 7
	TCP Client-server II
	Due: November 10, 2006


