
Assignment 4

Writing a basic shell

Due: September 8

Write a program in C to act as a command interpreter (Shell). The shell will give a
prompt for the user to type in a command (from a set of commands), take the command,
execute it, and then give the prompt back for the next command (i.e., actually give the
functionality of a shell). Your program should do the following:

• Give a prompt "shell>" for the user to type in a command
• Implement the following builtin commands:

o cd "dir" : changes the directory to "dir"
o pwd : prints the current directory
o mkdir "dir" : creates a directory called "dir"
o rmdir "dir" : removes the directory called "dir"
o exit : exits the shell

The commands are the same as the corresponding Linux commands by the same
name. Do "man" to see the descriptions. You can use the standard system calls
chdir, getcwd, mkdir, rmdir etc. to implement the calls (standard C library
functions are available for these; look them up).
These commands are called builtin commands since your shell program will have
a function corresponding to each of these commands to execute them; no new
process will be created to execute them.

• Any other command typed at the prompt should be executed as if it is the name of
an executable file. For example, typing "a.out" should execute the file a.out . The
file can be in the current directory or in any of the directories specified by the
PATH environment variable. The file should be executed after creating a new
process and then exec'ing the file onto it. The parent process should wait for the
file to finish execution and then go on to read the next command from the user.

• Should be able to redirect the output of a program to a file using ">" and read the
input of a program from a file using "<". For example, typing "a.out > outfile"
should send whatever was supposed to be displayed on the screen by a.out to the
file outfile . Similarly, typing "a.out < infile" should make a.out take the inputs
from the file infile instead of the keyboard.

• Should be able to redirect the output of one command to the input of another by
using the "|" symbol. For example, if there is a program a.out that writes a string
"abcde" to the display, and there is a program b.out that takes as input a string
typed from the keyboard, counts the number of characters in the string, an
displays it, then typing "a.out | b.out" at your shell prompt should display 5 (the
output "abcde" from a.out was fed as input to b.out , and 5, the number of
characters in "abcde", is printed). Use the pipe command.

To run your shell, write another C program that will create a child process and call an
appropriate form of exec to run the program above. The parent process simply waits for
the child to finish (execute the "exit" command), after which it also exits.

Name the file containing your C code for the shell <your roll no>_sh.c (for example,
06CS1004_sh.c). Submit only this C file.

