
CS69003: Computing Systems Lab I
Autumn 2006

Assignment 3

Implementing a divide-and-conquer algorithm for computing convex hulls in 2-dimension

Due: August 25, 2006

This assignment consists of the following parts:

• Input data generation: Generate a sequence ofn points in thex-y plane. Each point is specified by
its two coordinates which are to be generated randomly between 0 and1. Notice that C’srand()
function generates random integers between0 and231 − 1. Convert these integers to floating point
values between0 and1.

• Compute the convex hull: Implement Preparata and Hong’s divide-and-conquer algorithm that runs in
O(n log n) time. First sort then points with respect to theirx-coordinates. Use anyO(n log n)-time
algorithm to this effect. Now divide the set of points in two subsets of half size. Recursively compute
the convex hulls for the left and right halves of the points. Merge the two hulls by computing the upper
and lower tangents.

• Display the computed convex hull: We need a graphical display of your point set and the computed
convex hull. For that, we urge you to usegnuplot. A plotter file namedCH.gnuplot is provided.
This file, in turn, requires two data files:CH1.dat andCH2.dat that your program should generate.
The fileCH1.dat should contain data for then input points. Each line should mention thex andy
coordinates of a point separated by a space. In the second fileCH2.dat, you should specify the vertices
of the convex hull in a clockwise fashion starting and endingat the same point. In this file too, you
specify each vertex (i.e., its two coordinates) in a single line. An example follows:

Data fileCH1.dat

0.2 0.1
0.3 0.8
0.4 0.4
0.5 0.3
0.6 0.5
0.7 0.6
0.8 0.2

Data fileCH2.dat

0.2 0.1
0.3 0.8
0.7 0.6
0.8 0.2
0.2 0.1

Plotter fileCH.gnuplot

set nokey
set noxtics
set noytics
set xrange [-0.05:1.05]
set yrange [-0.05:1.05]
plot "CH2.dat" with lines linewidth 2, \

"CH1.dat" with points pointtype 7 pointsize 2

The graphical output

How to rungnuplot:

% gnuplot

G N U P L O T
Version 4.0 patchlevel 0
last modified Thu Apr 15 14:44:22 CEST 2004
System: Linux 2.6.11-6mdksmp

Copyright (C) 1986 - 1993, 1998, 2004
Thomas Williams, Colin Kelley and many others

...
Terminal type set to ’x11’
gnuplot> load "CH.gnuplot"
gnuplot> quit
%



Convex hulls

We are given a (finite) set points in the plane. Our task is to compute the smallest convex region that contains
all these points. It is easy to conceive that this smallest convex region must be a convex polygon (since the
given set of points is finite). We call this smallest convex region theconvex hull of the given set of points.

You may visualize a convex hull in the following way. Imaginethat a nail is struck on a flat ground at
each of the given points. We are given a sufficiently stretchable elastic rubber band. Our task is to place the
rubber band in such a way that it encloses all the nails, and the total area enclosed by the stretched band is as
small as possible. The next figure shows the convex hull of a set of sixteen points.

The upper hull

The lower hullThe convex hull

L R

Being a convex polygon, a convex hull can be represented by a sequence of vertices appearing in the
clockwise order. We can break this sequence in two parts. LetL andR be the leftmost and rightmost points in
this polygon (clearly also in the given set of points). The clockwise listing of vertices on the polygon starting
from L and ending atR is called theupper hull of the given points. Analogously, the clockwise listing of the
vertices of the convex hull starting atR and ending atL is thelower hull of the given points. Ifn points are
given, then the convex hull containsO(n) vertices (and edges). It then easily follows that given the convex
hull, we can compute the upper and lower hulls inO(n) time. Conversely, given the upper and lower hulls,
we can compute the entire convex hull inO(n) time. It, therefore, suffices to compute the upper and lower
hulls individually.

For the sake of brevity, let me introduce some notations. LetS be the given set of points. The convex hull
of S is denoted byCH(S), the upper hull ofS by UH(S), and the lower hull byLH(S). We will assume that
the points inS are in general position. In this context, this assertion indicates that thex-coordinates of the
points inS are (pairwise) distinct, and also that no three of these points are collinear.

Preparata and Hong’s divide-and-conquer algorithm

I now describe a recursive algorithm for computingCH(P1, . . . , Pn) that runs in timeO(n log n). Since
sorting n points satisfies the same time bound, we may assume without loss of generality that the points
P1, . . . , Pn are already sorted with respect to theirx coordinates. Moreover, we assume that the points are
in general position so that thex coordinates ofP1, . . . , Pn form a strictly increasing sequence. Consider the
following recursive algorithm.

if (n ≤ 3) manually compute and return CH(P1, . . . , Pn);

Recursively compute C1 = CH(P1, . . . , P⌈n/2⌉);

Recursively compute C2 = CH(P⌈n/2⌉+1, . . . , Pn);

Merge C1 and C2 to C = CH(P1, . . . , Pn);

Return C;

Let T (n) be the running time for this recursive algorithm. Assume that C1 andC2 can be merged inO(n)
time. We then have:

T (n) = T (⌈n/2⌉) + T (⌊n/2⌋) + O(n) for n > 3 .

We have seen that this divide-and-conquer recurrence has the solutionT (n) = O(n log n).



upper tangent

lower tangent

Left Hull
(LH)

Right Hull
(RH)

I need to supply an algorithm that can mergeC1 andC2 in linear time. Since the points are sorted and
have distinctx coordinates, the left hullC1 is separated from the right hullC2 by a vertical strip. In view of
this, an idea illustrated in the above figure works.

A line L is called atangent (or a supporting line) to a convex polygon if it touches the convex polygon
and all vertices of the convex polygon lie on or to one side ofL. We plan to compute the upper and the lower
tangents common to bothC1 andC2. We discard from bothC1 andC2 all the points strictly between these
two tangents. The remaining points can be easily presented in the form of a clockwise sequence defining the
merged hullC.

Evidently, the merging algorithm runs inO(n) time, provided that we can compute the two tangents in
O(n) time. Here I describe an algorithm for the computation of theupper tangent only. The determination of
the lower tangent can be symmetrically handled.

The following figure illustrates the computation of the upper tangent. We let two pointsP1, P2 march
along the perimeters ofC1 andC2 respectively. Initially,P1 is the rightmost point ofC1 andP2 the leftmost
point ofC2. The pointP1 jumps from a vertex inC1 to the next vertex in the counterclockwise order, whereas
P2 moves in the clockwise order along the boundary ofC2. At every intermediate instant, we check whether
the oriented segmentP1P2 is an upper tangent toC1 and the oriented segmentP2P1 is an upper tangent to
C2. This means that we check whether both the neighboring points of P1 lie to the right ofP1P2 and both
the neighboring points ofP2 lie to the left ofP2P1.1 If this condition is not satisfied atP1 (resp.P2), we
moveP1 (resp.P2) to the next vertex in the counterclockwise (resp. clockwise) direction alongC1 (resp.C2).
Eventually,P1 andP2 reach the vertices defining the upper tangent. As the following figure illustrates, the
vertices defining the common tangent need not be the topmost vertices of the two hulls (See the left hull).

Third walk in LH

First walk in LH

Second walk in RH

Left Hull
(LH)

Right Hull
(RH)

Computing the upper tangent

1Let L be the oriented line segment from a pointP1 = (x1, y1) to a pointP2 = (x2, y2). Assume thatP = (h, k) is any point in
the plane. Consider the determinant:

side(P1, P2, P ) = det

(

1 x1 y1

1 x2 y2

1 h k

)

.

It turns out that the pointP lies on, to the left, or to the right of the oriented lineL according as the determinantside(P1, P2, P ) is
zero, positive, or negative, respectively.



The following code snippet summarizes the algorithm for computing the upper tangent.

Initialize P1 to the rightmost point of the left hull C1;

Initialize P2 to the leftmost point of the right hull C2;

while (P1P2 is not a common tangent to C1 and C2) {

while (P1P2 is not an upper tangent of C1)

advance P1 to the next (counterclockwise) vertex of C1;

while (P2P1 is not an upper tangent of C2)

advance P2 to the next (clockwise) vertex of C2;

}

Return (P1, P2);

Though intuitively clear, it demands a formal proof to settle that the above algorithm correctly computes
the upper tangent, i.e., the moving pointsP1, P2 do not overshoot the respective vertices of tangency onC1

andC2. I leave the proof to the reader as an exercise and concentrate on the running time of the algorithm.

Let h1 andh2 be the numbers of vertices inC1 andC2 respectively. Though we have a nested loop in the
code, every step in the walk advances eitherP1 or P2. Therefore, after at mosth1 + h2 steps, the walk stops.
Sinceh1 + h2 ≤ n, we conclude that the upper tangent can be computed inO(n) time.


