CS69003: Computing SystemsLab |
Autumn 2006

Assignment 3

| mplementing a divide-and-conquer algorithm for computing convex hullsin 2-dimension

Due: August 25, 2006

This assignment consists of the following parts:

Input data generation: Generate a sequence ofpoints in thex-y plane. Each point is specified by
its two coordinates which are to be generated randomly lEtWeand 1. Notice that C’sr and()
function generates random integers betw8eand 23! — 1. Convert these integers to floating point
values betweefl and1.

Compute the convex hull: Implement Preparata and Hong's divide-and-conquer #hgorthat runs in
O(nlogn) time. First sort then points with respect to their-coordinates. Use ang(n log n)-time
algorithm to this effect. Now divide the set of points in twabsets of half size. Recursively compute
the convex hulls for the left and right halves of the pointserlye the two hulls by computing the upper
and lower tangents.

Display the computed convex hull: We need a graphical display of your point set and the congpute
convex hull. For that, we urge you to ugeupl ot . A plotter file namedCH. gnupl ot is provided.
This file, in turn, requires two data file€H1. dat andCH2. dat that your program should generate.
The file CH1. dat should contain data for the input points. Each line should mention theandy
coordinates of a point separated by a space. In the secomthfilalat , you should specify the vertices
of the convex hull in a clockwise fashion starting and endabghe same point. In this file too, you
specify each vertex (i.e., its two coordinates) in a sinigle.|An example follows:

Data fileCH1. dat | Data fileCH2. dat | Plotter fileCH. gnupl ot
0.2 0.1 0.2 0.1 set nokey
0.3 0.8 0.3 0.8 set noxtics
0.4 0.4 0.7 0.6 set noytics
0.5 0.3 0.8 0.2 set xrange [-0.05: 1. 05]
0.6 0.5 0.2 0.1 set yrange [-0.05: 1. 05]
0.7 0.6 plot "CH2.dat" with lines linewidth 2, \
0.8 0.2 "CHl.dat" with points pointtype 7 pointsize 2
How to rungnupl ot :
The graphical output % gnupl ot
— GNUPLOT

Version 4.0 patchlevel 0
last nodified Thu Apr 15 14:44:22 CEST 2004
System Linux 2.6.11-6ndksnp

Copyright (C) 1986 - 1993, 1998, 2004
Thomas WIlians, Colin Kelley and many others

Term nal type set to 'x11’
gnupl ot > | oad " CH. gnupl ot"
gnhupl ot > qui t

-0.0879503. 0.533047

%

Convex hulls

We are given a (finite) set points in the plane. Our task is tofute the smallest convex region that contains
all these points. It is easy to conceive that this smallest@o region must be a convex polygon (since the
given set of points is finite). We call this smallest convexioa theconvex hull of the given set of points.

You may visualize a convex hull in the following way. Imagiti&t a nail is struck on a flat ground at
each of the given points. We are given a sufficiently strditehalastic rubber band. Our task is to place the
rubber band in such a way that it encloses all the nails, amtbtial area enclosed by the stretched band is as
small as possible. The next figure shows the convex hull of afssxteen points.

The upper hull

The convex hull The lower hull

Being a convex polygon, a convex hull can be represented Bgaesice of vertices appearing in the
clockwise order. We can break this sequence in two partsLlagtd R be the leftmost and rightmost points in
this polygon (clearly also in the given set of points). Thecklwise listing of vertices on the polygon starting
from L and ending af is called theupper hull of the given points. Analogously, the clockwise listing loét
vertices of the convex hull starting & and ending af. is thelower hull of the given points. Iz points are
given, then the convex hull contaiiig(n) vertices (and edges). It then easily follows that given thievex
hull, we can compute the upper and lower hullgOifr) time. Conversely, given the upper and lower hulls,
we can compute the entire convex hulldr{n) time. It, therefore, suffices to compute the upper and lower
hulls individually.

For the sake of brevity, let me introduce some notations.SLe¢ the given set of points. The convex hull
of S is denoted byCH(.S), the upper hull ofS by UH(.S), and the lower hull by.H(S). We will assume that
the points inS are in general position. In this context, this assertionicaigs that the:-coordinates of the
points inS are (pairwise) distinct, and also that no three of thesetpaire collinear.

Preparata and Hong's divide-and-conquer algorithm

| now describe a recursive algorithm for computiQ§i(P;, ..., P,) that runs in timeO(nlogn). Since
sorting n points satisfies the same time bound, we may assume withssitoiogenerality that the points
Py, ..., P, are already sorted with respect to theicoordinates. Moreover, we assume that the points are
in general position so that thecoordinates ofP, . .., P, form a strictly increasing sequence. Consider the
following recursive algorithm.

if (n<3) nmanually conmpute and return CH(P,...,P,);
Recursively conpute Ci = CH(P,..., Pry21);
Recursively conpute Cy = CH(Prn/2141;---,Pn);

Merge Ci and C; to C =CH(P,...,P);

Return C;

Let T'(n) be the running time for this recursive algorithm. Assumd thiaandC, can be merged i®(n)
time. We then have:

T(n) =T([n/2]) + T(|n/2]) + O(n) for n>3.
We have seen that this divide-and-conquer recurrence basothtionT'(n) = O(n logn).

Right Hull
(RH)

Left Hull — === f-----co .2

(LH) lower tangent

| need to supply an algorithm that can mergeandCs in linear time. Since the points are sorted and
have distinctz coordinates, the left hull’; is separated from the right hull; by a vertical strip. In view of
this, an idea illustrated in the above figure works.

Aline L is called atangent (or a supporting line) to a convex polygon if it touches the convex polygon
and all vertices of the convex polygon lie on or to one sidé of\Ve plan to compute the upper and the lower
tangents common to both; andCs. We discard from bott”; andCs all the points strictly between these
two tangents. The remaining points can be easily presentttbiform of a clockwise sequence defining the
merged hullC'.

Evidently, the merging algorithm runs ®(n) time, provided that we can compute the two tangents in
O(n) time. Here | describe an algorithm for the computation ofupper tangent only. The determination of
the lower tangent can be symmetrically handled.

The following figure illustrates the computation of the upfengent. We let two point®;, P, march
along the perimeters af; andC'; respectively. Initially,P; is the rightmost point of®; and P, the leftmost
point of C'y. The pointP; jumps from a vertex i’y to the next vertex in the counterclockwise order, whereas
P, moves in the clockwise order along the boundary’ef At every intermediate instant, we check whether
the oriented segmem®, P, is an upper tangent t6; and the oriented segmeht P, is an upper tangent to
Cy. This means that we check whether both the neighboring poih®; lie to the right of P, P, and both
the neighboring points oP; lie to the left of P, P, If this condition is not satisfied aP;, (resp.), we
move P; (resp.P;) to the next vertex in the counterclockwise (resp. clocleyidirection alond’; (resp.Cs).
Eventually, P, and P, reach the vertices defining the upper tangent. As the fotigWigure illustrates, the
vertices defining the common tangent need not be the topredstas of the two hulls (See the left hull).

Right Hull
4 (RH)

Left Hull
(LH) Computing the upper tangent

!Let L be the oriented line segment from a poifit = (z1, y1) to a pointP, = (z2, y2). Assume thal’ = (h, k) is any pointin
the plane. Consider the determinant:

1 X1 Y1
side(Pi, P2, P)=det | 1 z2 y2 |.
1 h k&

It turns out that the poinP lies on, to the left, or to the right of the oriented liieaccording as the determinasitle(Py, P>, P) is
zero, positive, or negative, respectively.

The following code snippet summarizes the algorithm for patimg the upper tangent.

Initialize P, to the rightnost point of the left hull Ci;
Initialize P, to the leftnost point of the right hull Cs;
while (PP, is not a common tangent to C; and C3) {
while (PiP; is not an upper tangent of C))
advance P; to the next (counterclockw se) vertex of Ci;
while (P.P; is not an upper tangent of Cj)
advance P, to the next (clockw se) vertex of Cy;

}
Return (P, P);

Though intuitively clear, it demands a formal proof to setthat the above algorithm correctly computes
the upper tangent, i.e., the moving poitits, P, do not overshoot the respective vertices of tangencg’'on
and(Cs. | leave the proof to the reader as an exercise and concemnahe running time of the algorithm.

Let hy andhy be the numbers of vertices @, andC, respectively. Though we have a nested loop in the
code, every step in the walk advances eitReor P,. Therefore, after at mogt; + hs steps, the walk stops.
Sinceh; 4+ hy < n, we conclude that the upper tangent can be computex{+r) time.

