
CS69003: Computing Systems Lab 1
Autumn 2006

Assignment 2

Implementing a Graph ADT and some graph algorithms

Due: August 16

This assignment has two parts.

Part 1:
In the first part of this assignment, you will write a C program that will generate a
random undirected weighted graph. The program will take as command line arguments
four parameters (in this order) – no. of nodes (n), a probability (p), maximum weight (w >
0), and a file name (f). The program will generate a undirected weighted graph with n
nodes numbered from 1 to n, with an edge between each pair of nodes i and j generated
with probability p, and the weight of an edge being a positive integer value randomly
chosen between 1 and w. The generated graph will be written in the file named f in
exactly the following format:

line 1 - <no. of nodes>
line 2 - <edge probability used>
line 3 - <max. weight used>
Followed by all the edges, with each edge in a separate line written as the two node ids
followed by the weight (i.e., a sequence of 3 integers in each line)

Name the file <your roll no>_graph_gen.c (for example, 06CS1004_graph_gen.c).

Part 2
In this part, you will implement an ADT called GRAPH that can store a graph of
arbitrary number of nodes and edges. The GRAPH ADT will support the following
operations:

1. int CreateGraph(GRAPH *G, char *inp_file) – reads in a graph from the file
named inp_file in the graph G. The file inp_file should have a graph in the above
format. Returns 0 if graph is read successfully, -1 otherwise (for ex., file not
present)

2. int NoOfConnComp(GRAPH G) – returns the number of connected components
of G

3. int SizeOfLargestComp(GRAPH G) – returns the size (number of nodes) of the
largest connected component of G

4. int IsConnected(GRAPH G) – returns 1 if G is connected, 0 otherwise
5. int IsTree(GRAPH G) – returns 1 if G is a tree, 0 otherwise
6. void MST(GRAPH G) – if the graph is connected, finds the MST using Kruskal’s

algorithm and prints the edges on the screen (one edge on each line, with each
edge printed with three integers as earlier). If the graph is not connected, a

message is printed saying that “the graph is not connected and hence no spanning
tree exists”.

7. void Destroy(GRAPH *G) – releases any allocated memory for G. if no memory
is allocated, does nothing and returns.

Design appropriate data structures to define GRAPH and implement the above functions.
Your final output for this second part of the assignment will be two files:

1. A .h file containing the type definition for GRAPH and any other type definition
you may need. Name the file <your roll no.>_graph.h (for ex.
06CS1004_graph.h)

2. A .c file containing the implementation of the above functions that can be
compiled into a static library. This file will also contain any other function that
you may write to implement the above functions. For information on how to
create a static library, look up the linux manpage for the “ar” command. You do
not need to actually submit the static library, we will create it while evaluating.
Name the file <your roll no.>_graph.c (for ex., 06CS1004_graph.c).

We will test your program by creating another C file that has a main function to call the
above functions. This C program will be linked with your static library while compiled.
You should think about what all needs to be tested in your program and write a main
function to test it appropriately.

It is very important that you follow the above file naming conventions and function
prototypes EXACTLY as the evaluation will be done by a program that will assume
these. Any error arising out of deviations from above will incur severe penalty in
marks.

	Part 2

