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Block Ciphers

Contents in Brief

7.1 Introduction and overview . . . . . . . . . . . . . . . . . . . . . 223
7.2 Background and general concepts . . . . . . . . . . . . . . . . . 224
7.3 Classical ciphers and historical development . . . . . . . . . . . . 237
7.4 DES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
7.5 FEAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.6 IDEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.7 SAFER, RC5, and other block ciphers . . . . . . . . . . . . . . . 266
7.8 Notes and further references . . . . . . . . . . . . . . . . . . . . 271

7.1 Introduction and overview

Symmetric-key block ciphers are the most prominent and important elements in many cryp-
tographic systems. Individually, they provide confidentiality. As a fundamental building
block, their versatility allows construction of pseudorandom number generators, stream ci-
phers, MACs, and hash functions. They may furthermore serve as a central component in
message authentication techniques, data integrity mechanisms, entity authentication proto-
cols, and (symmetric-key)digital signature schemes. This chapter examines symmetric-key
block ciphers, including both general concepts and details of specific algorithms. Public-
key block ciphers are discussed in Chapter 8.

No block cipher is ideally suited for all applications, even one offering a high level of
security. This is a result of inevitable tradeoffs required in practical applications, including
those arising from, for example, speed requirements and memory limitations (e.g., code
size, data size, cache memory), constraints imposed by implementation platforms (e.g.,
hardware, software, chipcards), and differing tolerances of applications to properties of var-
ious modes of operation. In addition, efficiency must typically be traded off against security.
Thus it is beneficial to have a number of candidate ciphers from which to draw.

Of the many block ciphers currently available, focus in this chapter is given to a sub-
set of high profile and/or well-studied algorithms. While not guaranteed to be more secure
than other published candidate ciphers (indeed, this status changes as new attacks become
known), emphasis is given to those of greatest practical interest. Among these, DES is
paramount; FEAL has received both serious commercial backing and a large amount of in-
dependent cryptographic analysis; and IDEA (originally proposed as a DES replacement) is
widely known and highly regarded. Other recently proposed ciphers of both high promise
and high profile (in part due to the reputation of their designers) are SAFER and RC5. Ad-
ditional ciphers are presented in less detail.
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224 Ch. 7 Block Ciphers

Chapter outline

Basic background on block ciphers and algorithm-independent concepts are presented in
§7.2, including modes of operation, multiple encryption, and exhaustive search techniques.
Classical ciphers and cryptanalysis thereof are addressed in §7.3, including historical details
on cipher machines. Modern block ciphers covered in chronological order are DES (§7.4),
FEAL (§7.5), and IDEA (§7.6), followed by SAFER, RC5, and other ciphers in §7.7, col-
lectively illustrating a wide range of modern block cipher design approaches. Further notes,
including details on additional ciphers (e.g., Lucifer) and references for the chapter, may be
found in §7.8.

7.2 Background and general concepts

Introductory material on block ciphers is followed by subsections addressing modes of op-
eration, and discussion of exhaustive key search attacks and multiple encryption.

7.2.1 Introduction to block ciphers

Block ciphers can be either symmetric-key or public-key. The main focus of this chapter is
symmetric-key block ciphers; public-key encryption is addressed in Chapter 8.

(i) Block cipher definitions

A block cipher is a function (see §1.3.1) which maps n-bit plaintext blocks to n-bit cipher-
text blocks; n is called the blocklength. It may be viewed as a simple substitution cipher
with large character size. The function is parameterized by a k-bit key K,1 taking values
from a subset K (the key space) of the set of all k-bit vectors Vk . It is generally assumed
that the key is chosen at random. Use of plaintext and ciphertext blocks of equal size avoids
data expansion.

To allow unique decryption, the encryption function must be one-to-one (i.e., invert-
ible). For n-bit plaintext and ciphertext blocks and a fixed key, the encryption function is
a bijection, defining a permutation on n-bit vectors. Each key potentially defines a differ-
ent bijection. The number of keys is |K|, and the effective key size is lg |K|; this equals the
key length if all k-bit vectors are valid keys (K = Vk). If keys are equiprobable and each
defines a different bijection, the entropy of the key space is also lg |K|.

7.1 Definition An n-bit block cipher is a function E : Vn × K → Vn, such that for each
key K ∈ K, E(P,K) is an invertible mapping (the encryption function for K) from Vn
to Vn, written EK(P ). The inverse mapping is the decryption function, denoted DK(C).
C = EK(P ) denotes that ciphertext C results from encrypting plaintext P underK.

Whereas block ciphers generally process plaintext in relatively large blocks (e.g., n ≥
64), stream ciphers typically process smaller units (see Note 6.1); the distinction, however,
is not definitive (see Remark 7.25). For plaintext messages exceeding one block in length,
various modes of operation for block ciphers are used (see §7.2.2).

The most general block cipher implements every possible substitution, as per Defini-
tion 7.2. To represent the key of such an n-bit (true) random block cipher would require

1This use of symbols k andK may differ from other chapters.
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§7.2 Background and general concepts 225

lg(2n!) ≈ (n − 1.44)2n bits, or roughly 2n times the number of bits in a message block.
This excessive bitsize makes (true) random ciphers impractical. Nonetheless, it is an ac-
cepted design principle that the encryption function corresponding to a randomly selected
key should appear to be a randomly chosen invertible function.

7.2 Definition A (true) random cipher is ann-bit block cipher implementing all 2n! bijections
on 2n elements. Each of the 2n! keys specifies one such permutation.

A block cipher whose block size n is too small may be vulnerable to attacks based on
statistical analysis. One such attack involves simple frequency analysis of ciphertext blocks
(see Note 7.74). This may be thwarted by appropriate use of modes of operation (e.g., Al-
gorithm 7.13). Other such attacks are considered in Note 7.8. However, choosing too large
a value for the blocksize n may create difficulties as the complexity of implementation of
many ciphers grows rapidly with block size. In practice, consequently, for larger n, easily-
implementable functions are necessary which appear to be random (without knowledge of
the key).

An encryption function per Definition 7.1 is a deterministic mapping. Each pairing of
plaintext blockP and keyK maps to a unique ciphertext block. In contrast, in a randomized
encryption technique (Definition 7.3; see also Remark 8.22), each (P,K) pair is associated
with a set C(P,K) of eligible ciphertext blocks; each time P is encrypted underK, an out-
put R from a random source non-deterministically selects one of these eligible blocks. To
ensure invertibility, for every fixed keyK, the subsetsC(P,K) over all plaintextsP must be
disjoint. Since the encryption function is essentially one-to-many involving an additional
parameterR (cf. homophonic substitution, §7.3.2), the requirement for invertibility implies
data expansion, which is a disadvantage of randomized encryption and is often unaccept-
able.

7.3 Definition A randomized encryption mapping is a function E from a plaintext space Vn
to a ciphertext space Vm, m > n, drawing elements from a space of random numbers R
= Vt. E is defined by E : Vn ×K ×R→ Vm, such that for each keyK ∈ K and R ∈ R,
E(P,K,R), also written ERK(P ), maps P ∈ Vn to Vm; and an inverse (corresponding
decryption) function exists, mapping Vm ×K→ Vn.

(ii) Practical security and complexity of attacks

The objective of a block cipher is to provide confidentiality. The corresponding objective
of an adversary is to recover plaintext from ciphertext. A block cipher is totally broken if a
key can be found, and partially broken if an adversary is able to recover part of the plaintext
(but not the key) from ciphertext.

7.4 Note (standard assumptions) To evaluate block cipher security, it is customary to always
assume that an adversary (i) has access to all data transmitted over the ciphertext channel;
and (ii) (Kerckhoffs’ assumption) knows all details of the encryption function except the
secret key (which security consequently rests entirely upon).

Under the assumptions of Note 7.4, attacks are classified based on what information
a cryptanalyst has access to in addition to intercepted ciphertext (cf. §1.13.1). The most
prominent classes of attack for symmetric-key ciphers are (for a fixed key):

1. ciphertext-only – no additional information is available.
2. known-plaintext – plaintext-ciphertext pairs are available.
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226 Ch. 7 Block Ciphers

3. chosen-plaintext – ciphertexts are available corresponding to plaintexts of the adver-
sary’s choice. A variation is an adaptive chosen-plaintext attack, where the choice of
plaintexts may depend on previous plaintext-ciphertext pairs.

Additional classes of attacks are given in Note 7.6; while somewhat more hypothetical,
these are nonetheless of interest for the purposes of analysis and comparison of ciphers.

7.5 Remark (chosen-plaintext principle) It is customary to use ciphers resistant to chosen-
plaintext attack even when mounting such an attack is not feasible. A cipher secure against
chosen-plaintext attack is secure against known-plaintext and ciphertext-only attacks.

7.6 Note (chosen-ciphertext and related-key attacks) A chosen-ciphertext attack operates un-
der the following model: an adversary is allowed access to plaintext-ciphertext pairs for
some number of ciphertexts of his choice, and thereafter attempts to use this information
to recover the key (or plaintext corresponding to some new ciphertext). In a related-key at-
tack, an adversary is assumed to have access to the encryption of plaintexts under both an
unknown key and (unknown) keys chosen to have or known to have certain relationships
with this key.

With few exceptions (e.g., the one-time pad), the best available measure of security for
practical ciphers is the complexity of the best (currently) known attack. Various aspects of
such complexity may be distinguished as follows:

1. data complexity – expected number of input data units required (e.g., ciphertext).
2. storage complexity – expected number of storage units required.
3. processing complexity – expected number of operations required to process input data

and/or fill storage with data (at least one time unit per storage unit).

The attack complexity is the dominant of these (e.g., for linear cryptanalysis on DES, essen-
tially the data complexity). When parallelization is possible, processing complexity may be
divided across many processors (but not reduced), reducing attack time.

Given a data complexity of 2n, an attack is always possible; this many different n-
bit blocks completely characterize the encryption function for a fixed k-bit key. Similarly,
given a processing complexity of 2k, an attack is possible by exhaustive key search (§7.2.3).
Thus as a minimum, the effective key size should be sufficiently large to preclude exhaus-
tive key search, and the block size sufficiently large to preclude exhaustive data analysis.
A block cipher is considered computationally secure if these conditions hold and no known
attack has both data and processing complexity significantly less than, respectively, 2n and
2k. However, see Note 7.8 for additional concerns related to block size.

7.7 Remark (passive vs. active complexity) For symmetric-key block ciphers, data complex-
ity is beyond the control of the adversary, and is passive complexity (plaintext-ciphertext
pairs cannot be generated by the adversary itself). Processing complexity is active com-
plexity which typically benefits from increased resources (e.g., parallelization).

7.8 Note (attacks based on small block size) Security concerns which arise if the block size
n is too small include the feasibility of text dictionary attacks and matching ciphertext at-
tacks. A text dictionary may be assembled if plaintext-ciphertext pairs become known for
a fixed key. The more pairs available, the larger the dictionary and the greater the chance of
locating a random ciphertext block therein. A complete dictionary results if 2n plaintext-
ciphertext pairs become known, and fewer suffice if plaintexts contain redundancy and a
non-chaining mode of encryption (such as ECB) is used. Moreover, if about 2n/2 such pairs
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§7.2 Background and general concepts 227

are known, and about 2n/2 ciphertexts are subsequently created, then by the birthday para-
dox one expects to locate a ciphertext in the dictionary. Relatedly, from ciphertext blocks
alone, as the number of available blocks approaches 2n/2, one expects to find matching ci-
phertext blocks. These may reveal partial information about the corresponding plaintexts,
depending on the mode of operation of the block cipher, and the amount of redundancy in
the plaintext.

Computational and unconditional security are discussed in §1.13.3. Unconditional se-
curity is both unnecessary in many applications and impractical; for example, it requires
as many bits of secret key as plaintext, and cannot be provided by a block cipher used to
encrypt more than one block (due to Fact 7.9, since identical ciphertext implies matching
plaintext). Nonetheless, results on unconditional security provide insight for the design of
practical ciphers, and has motivated many of the principles of cryptographic practice cur-
rently in use (see Remark 7.10).

7.9 Fact A cipher provides perfect secrecy (unconditional security) if the ciphertext and plain-
text blocks are statistically independent.

7.10 Remark (theoretically-motivated principles) The unconditional security of the one-time-
pad motivates both additive stream ciphers (Chapter 6) and the frequent changing of cryp-
tographic keys (§13.3.1). Theoretical results regarding the effect of redundancy on unicity
distance (Fact 7.71) motivate the principle that for plaintext confidentiality, the plaintext
data should be as random as possible, e.g., via data-compression prior to encryption, use of
random-bit fields in message blocks, or randomized encryption (Definition 7.3). The latter
two techniques may, however, increase the data length or allow covert channels.

(iii) Criteria for evaluating block ciphers and modes of operation

Many criteria may be used for evaluating block ciphers in practice, including:

1. estimated security level. Confidence in the (historical) security of a cipher grows if it
has been subjected to and withstood expert cryptanalysis over a substantial time pe-
riod, e.g., several years or more; such ciphers are certainly considered more secure
than those which have not. This may include the performance of selected cipher com-
ponents relative to various design criteria which have been proposed or gained favor
in recent years. The amount of ciphertext required to mount practical attacks often
vastly exceeds a cipher’s unicity distance (Definition 7.69), which provides a theo-
retical estimate of the amount of ciphertext required to recover the unique encryption
key.

2. key size. The effective bitlength of the key, or more specifically, the entropy of the key
space, defines an upper bound on the security of a cipher (by considering exhaustive
search). Longer keys typically impose additional costs (e.g., generation, transmis-
sion, storage, difficulty to remember passwords).

3. throughput. Throughput is related to the complexity of the cryptographic mapping
(see below), and the degree to which the mapping is tailored to a particular imple-
mentation medium or platform.

4. block size. Block size impacts both security (larger is desirable) and complexity
(larger is more costly to implement). Block size may also affect performance, for
example, if padding is required.

5. complexity of cryptographic mapping. Algorithmic complexity affects the imple-
mentation costs both in terms of development and fixed resources (hardware gate
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228 Ch. 7 Block Ciphers

count or software code/data size), as well as real-time performance for fixed resources
(throughput). Some ciphers specifically favor hardware or software implementations.

6. data expansion. It is generally desirable, and often mandatory, that encryption does
not increase the size of plaintext data. Homophonic substitution and randomized en-
cryption techniques result in data expansion.

7. error propagation. Decryption of ciphertext containing bit errors may result in vari-
ous effects on the recovered plaintext, including propagation of errors to subsequent
plaintext blocks. Different error characteristics are acceptable in various applica-
tions. Block size (above) typically affects error propagation.

7.2.2 Modes of operation

A block cipher encrypts plaintext in fixed-size n-bit blocks (often n = 64). For messages
exceeding n bits, the simplest approach is to partition the message into n-bit blocks and
encrypt each separately. This electronic-codebook (ECB) mode has disadvantages in most
applications, motivating other methods of employing block ciphers (modes of operation)
on larger messages. The four most common modes are ECB, CBC, CFB, and OFB. These
are summarized in Figure 7.1 and discussed below.

In what follows, EK denotes the encryption function of the block cipher E parame-
terized by keyK, while E−1K denotes decryption (cf. Definition 7.1). A plaintext message
x = x1 . . . xt is assumed to consist of n-bit blocks for ECB and CBC modes (see Algo-
rithm 9.58 regarding padding), and r-bit blocks for CFB and OFB modes for appropriate
fixed r ≤ n.

(i) ECB mode

The electronic codebook (ECB) mode of operation is given in Algorithm 7.11 and illustrated
in Figure 7.1(a).

7.11 Algorithm ECB mode of operation

INPUT: k-bit keyK; n-bit plaintext blocks x1, . . . , xt.
SUMMARY: produce ciphertext blocks c1, . . . , ct; decrypt to recover plaintext.

1. Encryption: for 1 ≤ j ≤ t, cj ← EK(xj).
2. Decryption: for 1 ≤ j ≤ t, xj ← E

−1
K (cj).

Properties of the ECB mode of operation:

1. Identical plaintext blocks (under the same key) result in identical ciphertext.
2. Chaining dependencies: blocks are enciphered independently of other blocks. Re-

ordering ciphertext blocks results in correspondingly re-ordered plaintext blocks.
3. Error propagation: one or more bit errors in a single ciphertext block affect decipher-

ment of that block only. For typical ciphersE, decryption of such a block is then ran-
dom (with about 50% of the recovered plaintext bits in error). Regarding bits being
deleted, see Remark 7.15.

7.12 Remark (use of ECB mode) Since ciphertext blocks are independent, malicious substi-
tution of ECB blocks (e.g., insertion of a frequently occurring block) does not affect the
decryption of adjacent blocks. Furthermore, block ciphers do not hide data patterns – iden-
tical ciphertext blocks imply identical plaintext blocks. For this reason, the ECB mode is
not recommended for messages longer than one block, or if keys are reused for more than
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Figure 7.1: Common modes of operation for an n-bit block cipher.
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230 Ch. 7 Block Ciphers

a single one-block message. Security may be improved somewhat by inclusion of random
padding bits in each block.

(ii) CBC mode

The cipher-block chaining (CBC) mode of operation, specified in Algorithm 7.13 and il-
lustrated in Figure 7.1(b), involves use of an n-bit initialization vector, denoted IV .

7.13 Algorithm CBC mode of operation

INPUT: k-bit keyK; n-bit IV ; n-bit plaintext blocks x1, . . . , xt.
SUMMARY: produce ciphertext blocks c1, . . . , ct; decrypt to recover plaintext.

1. Encryption: c0 ← IV . For 1 ≤ j ≤ t, cj ← EK(cj−1⊕xj).
2. Decryption: c0 ← IV . For 1 ≤ j ≤ t, xj ← cj−1⊕E

−1
K (cj).

Properties of the CBC mode of operation:

1. Identical plaintexts: identical ciphertext blocks result when the same plaintext is en-
ciphered under the same key and IV . Changing the IV , key, or first plaintext block
(e.g., using a counter or random field) results in different ciphertext.

2. Chaining dependencies: the chaining mechanism causes ciphertext cj to depend on
xj and all preceding plaintext blocks (the entire dependency on preceding blocks is,
however, contained in the value of the previous ciphertext block). Consequently, re-
arranging the order of ciphertext blocks affects decryption. Proper decryption of a
correct ciphertext block requires a correct preceding ciphertext block.

3. Error propagation: a single bit error in ciphertext block cj affects decipherment of
blocks cj and cj+1 (since xj depends on cj and cj−1). Block x′j recovered from cj
is typically totally random (50% in error), while the recovered plaintext x′j+1 has bit
errors precisely where cj did. Thus an adversary may cause predictable bit changes
in xj+1 by altering corresponding bits of cj . See also Remark 7.14.

4. Error recovery: the CBC mode is self-synchronizing or ciphertext autokey (see Re-
mark 7.15) in the sense that if an error (including loss of one or more entire blocks)
occurs in block cj but not cj+1, cj+2 is correctly decrypted to xj+2.

7.14 Remark (error propagation in encryption) Although CBC mode decryption recovers from
errors in ciphertext blocks, modifications to a plaintext block xj during encryption alter all
subsequent ciphertext blocks. This impacts the usability of chaining modes for applications
requiring random read/write access to encrypted data. The ECB mode is an alternative (but
see Remark 7.12).

7.15 Remark (self-synchronizing vs. framing errors) Although self-synchronizing in the sense
of recovery from bit errors, recovery from “lost” bits causing errors in block boundaries
(framing integrity errors) is not possible in the CBC or other modes.

7.16 Remark (integrity of IV in CBC) While the IV in the CBC mode need not be secret, its
integrity should be protected, since malicious modification thereof allows an adversary to
make predictable bit changes to the first plaintext block recovered. Using a secret IV is
one method for preventing this. However, if message integrity is required, an appropriate
mechanism should be used (see §9.6.5); encryption mechanisms typically guarantee confi-
dentiality only.
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§7.2 Background and general concepts 231

(iii) CFB mode

While the CBC mode processes plaintextn bits at a time (using ann-bit block cipher), some
applications require that r-bit plaintext units be encrypted and transmitted without delay, for
some fixed r < n (often r = 1 or r = 8). In this case, the cipher feedback (CFB) mode
may be used, as specified in Algorithm 7.17 and illustrated in Figure 7.1(c).

7.17 Algorithm CFB mode of operation (CFB-r)

INPUT: k-bit keyK; n-bit IV ; r-bit plaintext blocks x1, . . . , xu (1 ≤ r ≤ n).
SUMMARY: produce r-bit ciphertext blocks c1, . . . , cu; decrypt to recover plaintext.

1. Encryption: I1 ← IV . (Ij is the input value in a shift register.) For 1 ≤ j ≤ u:
(a) Oj ← EK(Ij). (Compute the block cipher output.)
(b) tj ← the r leftmost bits of Oj . (Assume the leftmost is identified as bit 1.)
(c) cj ← xj⊕tj . (Transmit the r-bit ciphertext block cj .)
(d) Ij+1 ← 2r · Ij + cj mod 2n. (Shift cj into right end of shift register.)

2. Decryption: I1 ← IV . For 1 ≤ j ≤ u, upon receiving cj :
xj ← cj⊕tj , where tj , Oj and Ij are computed as above.

Properties of the CFB mode of operation:
1. Identical plaintexts: as per CBC encryption, changing the IV results in the same

plaintext input being enciphered to a different output. The IV need not be secret
(although an unpredictable IV may be desired in some applications).

2. Chaining dependencies: similar to CBC encryption, the chaining mechanism causes
ciphertext block cj to depend on both xj and preceding plaintext blocks; consequent-
ly, re-ordering ciphertext blocks affects decryption. Proper decryption of a correct
ciphertext block requires the preceding dn/re ciphertext blocks to be correct (so that
the shift register contains the proper value).

3. Error propagation: one or more bit errors in any single r-bit ciphertext block cj af-
fects the decipherment of that and the next dn/re ciphertext blocks (i.e., until n bits
of ciphertext are processed, after which the error block cj has shifted entirely out of
the shift register). The recovered plaintext x′j will differ from xj precisely in the bit
positions cj was in error; the other incorrectly recovered plaintext blocks will typi-
cally be random vectors, i.e., have 50% of bits in error. Thus an adversary may cause
predictable bit changes in xj by altering corresponding bits of cj .

4. Error recovery: the CFB mode is self-synchronizing similar to CBC, but requires
dn/re ciphertext blocks to recover.

5. Throughput: for r < n, throughput is decreased by a factor of n/r (vs. CBC) in that
each execution of E yields only r bits of ciphertext output.

7.18 Remark (CFB use of encryption only) Since the encryption function E is used for both
CFB encryption and decryption, the CFB mode must not be used if the block cipher E is a
public-key algorithm; instead, the CBC mode should be used.

7.19 Example (ISO variant of CFB) The CFB mode of Algorithm 7.17 may be modified as
follows, to allow processing of plaintext blocks (characters) whose bitsize s is less than the
bitsize r of the feedback variable (e.g., 7-bit characters using 8-bit feedback; s < r). The
leftmost s (rather than r) bits of Oj are assigned to tj ; the s-bit ciphertext character cj is
computed; the feedback variable is computed from cj by pre-prepending (on the left) r− s
1-bits; the resulting r-bit feedback variable is shifted into the least significant (LS) end of
the shift register as before. �
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232 Ch. 7 Block Ciphers

(iv) OFB mode

The output feedback (OFB) mode of operation may be used for applications in which all
error propagation must be avoided. It is similar to CFB, and allows encryption of various
block sizes (characters), but differs in that the output of the encryption block function E
(rather than the ciphertext) serves as the feedback.

Two versions of OFB using an n-bit block cipher are common. The ISO version (Fig-
ure 7.1(d) and Algorithm 7.20) requires an n-bit feedback, and is more secure (Note 7.24).
The earlier FIPS version (Algorithm 7.21) allows r < n bits of feedback.

7.20 Algorithm OFB mode with full feedback (per ISO 10116)

INPUT: k-bit keyK; n-bit IV ; r-bit plaintext blocks x1, . . . , xu (1 ≤ r ≤ n).
SUMMARY: produce r-bit ciphertext blocks c1, . . . , cu; decrypt to recover plaintext.

1. Encryption: I1 ← IV . For 1 ≤ j ≤ u, given plaintext block xj :

(a) Oj ← EK(Ij). (Compute the block cipher output.)
(b) tj ← the r leftmost bits of Oj . (Assume the leftmost is identified as bit 1.)
(c) cj ← xj⊕tj . (Transmit the r-bit ciphertext block cj .)
(d) Ij+1 ← Oj . (Update the block cipher input for the next block.)

2. Decryption: I1 ← IV . For 1 ≤ j ≤ u, upon receiving cj :
xj ← cj⊕tj , where tj , Oj , and Ij are computed as above.

7.21 Algorithm OFB mode with r-bit feedback (per FIPS 81)

INPUT: k-bit keyK; n-bit IV ; r-bit plaintext blocks x1, . . . , xu (1 ≤ r ≤ n).
SUMMARY: produce r-bit ciphertext blocks c1, . . . , cu; decrypt to recover plaintext.
As per Algorithm 7.20, but with “Ij+1 ← Oj” replaced by:
Ij+1 ← 2r · Ij + tj mod 2n. (Shift output tj into right end of shift register.)

Properties of the OFB mode of operation:

1. Identical plaintexts: as per CBC and CFB modes, changing the IV results in the same
plaintext being enciphered to a different output.

2. Chaining dependencies: the keystream is plaintext-independent (see Remark 7.22).
3. Error propagation: one or more bit errors in any ciphertext character cj affects the

decipherment of only that character, in the precise bit position(s) cj is in error, causing
the corresponding recovered plaintext bit(s) to be complemented.

4. Error recovery: the OFB mode recovers from ciphertext bit errors, but cannot self-
synchronize after loss of ciphertext bits, which destroys alignment of the decrypting
keystream (in which case explicit re-synchronization is required).

5. Throughput: for r < n, throughput is decreased as per the CFB mode. However,
in all cases, since the keystream is independent of plaintext or ciphertext, it may be
pre-computed (given the key and IV ).

7.22 Remark (changing IV in OFB) The IV , which need not be secret, must be changed if an
OFB key K is re-used. Otherwise an identical keystream results, and by XORing corre-
sponding ciphertexts an adversary may reduce cryptanalysis to that of a running-key cipher
with one plaintext as the running key (cf. Example 7.58 ff.).

Remark 7.18 on public-key block ciphers applies to the OFB mode as well as CFB.
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7.23 Example (counter mode) A simplification of OFB involves updating the input block as a
counter, Ij+1 = Ij + 1, rather than using feedback. This both avoids the short-cycle prob-
lem of Note 7.24, and allows recovery from errors in computingE. Moreover, it provides a
random-access property: ciphertext block i need not be decrypted in order to decrypt block
i+ 1. �

7.24 Note (OFB feedback size) In OFB with full n-bit feedback (Algorithm 7.20), the keystre-
am is generated by the iterated function Oj = EK(Oj−1). Since EK is a permutation,
and under the assumption that for randomK,EK is effectively a random choice among all
(2n)! permutations on n elements, it can be shown that for a fixed (random) key and starting
value, the expected cycle length before repeating any valueOj is about 2n−1. On the other
hand, if the number of feedback bits is r < n as allowed in Algorithm 7.21, the keystream
is generated by the iteration Oj = f(Oj−1) for some non-permutation f which, assuming
it behaves as a random function, has an expected cycle length of about 2n/2. Consequently,
it is strongly recommended to use the OFB mode with full n-bit feedback.

7.25 Remark (modes as stream ciphers) It is clear that both the OFB mode with full feedback
(Algorithm 7.20) and the counter mode (Example 7.23) employ a block cipher as a keystre-
am generator for a stream cipher. Similarly the CFB mode encrypts a character stream using
the block cipher as a (plaintext-dependent) keystream generator. The CBC mode may also
be considered a stream cipher with n-bit blocks playing the role of very large characters.
Thus modes of operation allow one to define stream ciphers from block ciphers.

7.2.3 Exhaustive key search and multiple encryption

A fixed-size key defines an upper bound on the security of a block cipher, due to exhaustive
key search (Fact 7.26). While this requires either known-plaintext or plaintext containing
redundancy, it has widespread applicability since cipher operations (including decryption)
are generally designed to be computationally efficient.

A design technique which complicates exhaustive key search is to make the task of
changing cipher keys computationally expensive, while allowing encryption with a fixed
key to remain relatively efficient. Examples of ciphers with this property include the block
cipher Khufu and the stream cipher SEAL.

7.26 Fact (exhaustive key search) For an n-bit block cipher with k-bit key, given a small num-
ber (e.g., d(k + 4)/ne) of plaintext-ciphertext pairs encrypted under key K, K can be re-
covered by exhaustive key search in an expected time on the order of 2k−1 operations.

Justification: Progress through the entire key space, decrypting a fixed ciphertext C with
each trial key, and discarding those keys which do not yield the known plaintext P . The
target key is among the undiscarded keys. The number of false alarms expected (non-target
keys which map C to P ) depends on the relative size of k and n, and follows from unicity
distance arguments; additional (P ′, C′) pairs suffice to discard false alarms. One expects
to find the correct key after searching half the key space.

7.27 Example (exhaustive DES key search) For DES, k = 56, n = 64, and the expected re-
quirement by Fact 7.26 is 255 decryptions and a single plaintext-ciphertext pair. �

If the underlying plaintext is known to contain redundancy as in Example 7.28, then
ciphertext-only exhaustive key search is possible with a relatively small number of cipher-
texts.
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7.28 Example (ciphertext-only DES key search) Suppose DES is used to encrypt 64-bit blocks
of 8 ASCII characters each, with one bit per character serving as an even parity bit. Trial
decryption with an incorrect keyK yields all 8 parity bits correct with probability 2−8, and
correct parity for t different blocks (each encrypted byK) with probability 2−8t. If this is
used as a filter over all 256 keys, the expected number of unfiltered incorrect keys is 256/28t.
For most practical purposes, t = 10 suffices. �

(i) Cascades of ciphers and multiple encryption

If a block cipher is susceptible to exhaustive key search (due to inadequate keylength), en-
cipherment of the same message block more than once may increase security. Various such
techniques for multiple encryption of n-bit messages are considered here. Once defined,
they may be extended to messages exceeding one block by using standard modes of oper-
ation (§7.2.2), with E denoting multiple rather than single encryption.

7.29 Definition A cascade cipher is the concatenation of L ≥ 2 block ciphers (called stages),
each with independent keys. Plaintext is input to first stage; the output of stage i is input to
stage i+ 1; and the output of stage L is the cascade’s ciphertext output.

In the simplest case, all stages in a cascade cipher have k-bit keys, and the stage in-
puts and outputs are all n-bit quantities. The stage ciphers may differ (general cascade of
ciphers), or all be identical (cascade of identical ciphers).

7.30 Definition Multiple encryption is similar to a cascade of L identical ciphers, but the stage
keys need not be independent, and the stage ciphers may be either a block cipher E or its
corresponding decryption functionD = E−1.

Two important cases of multiple encryption are double and triple encryption, as illus-
trated in Figure 7.2 and defined below.

E E
M

E(1) E(2) E(3)

K1 K3

B

(b) triple encryption (K1 = K3 for two-key variant)

K1 K2

K2

(a) double encryption

A

plaintext
P

plaintext
P

ciphertext

ciphertext

C

C

Figure 7.2: Multiple encryption.

7.31 Definition Double encryption is defined as E(x) = EK2(EK1(x)), where EK denotes a
block cipher E with keyK.
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7.32 Definition Triple encryption is defined as E(x) = E(3)K3(E
(2)
K2
(E
(1)
K1
(x))), where E(j)K de-

notes either EK or DK = E
−1
K . The case E(x) = EK3(DK2(EK1(x))) is called E-D-E

triple-encryption; the subcaseK1 = K3 is often called two-key triple-encryption.

Independent stage keys K1 and K2 are typically used in double encryption. In triple
encryption (Definition 7.32), to save on key management and storage costs, dependent stage
keys are often used. E-D-E triple-encryption with K1 = K2 = K3 is backwards compati-
ble with (i.e., equivalent to) single encryption.

(ii) Meet-in-the-middle attacks on multiple encryption

A naive exhaustive key search attack on double encryption tries all 22k key pairs. The attack
of Fact 7.33 reduces time from 22k, at the cost of substantial space.

7.33 Fact For a block cipher with a k-bit key, a known-plaintext meet-in-the-middle attack de-
feats double encryption using on the order of 2k operations and 2k storage.

Justification (basic meet-in-the-middle): Noting Figure 7.2(a), given a (P,C) pair, com-
puteMi = Ei(P ) under all 2k possible key valuesK1 = i; store all pairs (Mi, i), sorted
or indexed onMi (e.g., using conventional hashing). DecipherC under all 2k possible val-
ues K2 = j, and for each pair (Mj , j) where Mj = Dj(C), check for hits Mj = Mi
against entriesMi in the first table. (This can be done creating a second sorted table, or
simply checking eachMj entry as generated.) Each hit identifies a candidate solution key
pair (i, j), sinceEi(P ) =M = Dj(C). Using a second known-plaintext pair (P ′, C′) (cf.
Fact 7.35), discard candidate key pairs which do not map P ′ to C′.

A concept analogous to unicity distance for ciphertext-only attack (Definition 7.69) can
be defined for known-plaintext key search, based on the following strategy. Select a key;
check if it is consistent with a given set (history) of plaintext-ciphertext pairs; if so, label
the key a hit. A hit that is not the target key is a false key hit.

7.34 Definition The number of plaintext-ciphertext pairs required to uniquely determine a key
under a known-plaintext key search is the known-plaintext unicity distance. This is the
smallest integer t such that a history of length t makes false key hits improbable.

Using Fact 7.35, the (known-plaintext) unicity distance of a cascade of L random ci-
phers can be estimated. Less than one false hit is expected when t > Lk/n.

7.35 Fact For anL-stage cascade of random block ciphers with n-bit blocks and k-bit keys, the
expected number of false key hits for a history of length t is about 2Lk−tn.

Fact 7.35 holds with respect to random block ciphers defined as follows (cf. Defini-
tions 7.2 and 7.70): given n and k, of the possible (2n)! permutations on 2n elements,
choose 2k randomly and with equal probabilities, and associate these with the 2k keys.

7.36 Example (meet-in-the-middle – double-DES) Applying Fact 7.33 to DES (n = 64, k =
56), the number of candidate key pairs expected for one (P,C) pair is 248 = 2k · 2k/2n,
and the likelihood of a false key pair satisfying a second (P ′, C′) sample is 2−16 = 248/2n.
Thus with high probability, two (P,C) pairs suffice for key determination. This agrees with
the unicity distance estimate of Fact 7.35: for L = 2, a history of length t = 2 yields 2−16

expected false key hits. �
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A naive exhaustive attack on all key pairs in double-DES uses 2112 time and negligi-
ble space, while the meet-in-the-middle attack (Fact 7.33) requires 256 time and 256 space.
Note 7.37 illustrates that the latter can be modified to yield a time-memory trade-off at any
point between these two extremes, with the time-memory product essentially constant at
2112 (e.g., 272 time, 240 space).

7.37 Note (time-memory tradeoff – double-encryption) In the attack of Example 7.36, memory
may be reduced (from tables of 256 entries) by independently guessing s bits of each ofK1,
K2 (for any fixed s, 0 ≤ s ≤ k). The tables then each have 2k−s entries (fixing s key bits
eliminates 2s entries), but the attack must be run over 2s ·2s pairs of such tables to allow all
possible key pairs. The memory requirement is 2·2k−s entries (each n+k−s bits, omitting
s fixed key bits), while time is on the order of 22s ·2k−s = 2k+s. The time-memory product
is 22k+1.

7.38 Note (generalized meet-in-the-middle trade-off ) Variations of Note 7.37 allow time-space
tradeoffs for meet-in-the-middle key search on any concatenation of L ≥ 2 ciphers. For L
even, meeting between the first and last L/2 stages results in requirements on the order of
2 · 2(kL/2)−s space and 2(kL/2)+s time, 0 ≤ s ≤ kL/2. For L odd, meeting after the
first (L− 1)/2 and before the last (L+ 1)/2 stages results in requirements on the order of
2 · 2k(L−1)/2 − s space and 2k(L+1)/2 + s time, 1 ≤ s ≤ k(L− 1)/2.

For a block cipher with k-bit key, a naive attack on two-key triple encryption (Defini-
tion 7.32) involves trying all 22k key pairs. Fact 7.39 notes a chosen-plaintext alternative.

7.39 Fact For an n-bit block cipher with k-bit key, two-key triple encryption may be defeated
by a chosen-plaintext attack requiring on the order of 2k of each of the following: cipher
operations, words of (n+k)-bit storage, and plaintext-ciphertext pairs with plaintexts cho-
sen.

Justification (chosen-plaintext attack on two-key triple-encryption): Using 2k chosen plain-
texts, two-key triple encryption may be reduced to double-encryption as follows. Noting
Figure 7.2(b), focus on the case where the result after the first encryption stage is the all-
zero vector A = 0. For all 2k valuesK1 = i, compute Pi = E

−1
i (A). Submit each result-

ing Pi as a chosen plaintext, obtaining the corresponding ciphertextCi. For each, compute
Bi = E

−1
i (Ci), representing an intermediate result B after the second of three encryption

stages. Note that the valuesPi also represent candidate valuesB. Sort the valuesPj andBj
in a table (using standard hashing for efficiency). Identify the keys corresponding to pairs
Pj = Bi as candidate solution key pairs K1 = i, K2 = j to the given problem. Confirm
these by testing each key pair on a small number of additional known plaintext-ciphertext
pairs as required.

While generally impractical due to the storage requirement, the attack of Fact 7.39 is
referred to as a certificational attack on two-key triple encryption, demonstrating it to be
weaker than triple encryption. This motivates consideration of triple-encryption with three
independent keys, although a penalty is a third key to manage.

Fact 7.40, stated specifically for DES (n = 64, k = 56), indicates that for the price
of additional computation, the memory requirement in Fact 7.39 may be reduced and the
chosen-plaintext condition relaxed to known-plaintext. The attack, however, appears im-
practical even with extreme parallelization; for example, for lg t = 40, the number of op-
erations is still 280.
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7.40 Fact If t known plaintext-ciphertext pairs are available, an attack on two-key triple-DES
requiresO(t) space and 2120−lg t operations.

(iii) Multiple-encryption modes of operation

In contrast to the single modes of operation in Figure 7.1, multiple modes are variants of
multiple encryption constructed by concatenating selected single modes. For example, the
combination of three single-mode CBC operations provides triple-inner-CBC; an alterna-
tive is triple-outer-CBC, the composite operation of triple encryption (per Definition 7.32)
with one outer ciphertext feedback after the sequential application of three single-ECB op-
erations. With replicated hardware, multiple modes such as triple-inner-CBC may be pipe-
lined allowing performance comparable to single encryption, offering an advantage over
triple-outer-CBC. Unfortunately (Note 7.41), they are often less secure.

7.41 Note (security of triple-inner-CBC) Many multiple modes of operation are weaker than
the corresponding multiple-ECB mode (i.e., multiple encryption operating as a black box
with only outer feedbacks), and in some cases multiple modes (e.g., ECB-CBC-CBC) are
not significantly stronger than single encryption. In particular, under some attacks triple-
inner-CBC is significantly weaker than triple-outer-CBC; against other attacks based on the
block size (e.g., Note 7.8), it appears stronger.

(iv) Cascade ciphers

Counter-intuitively, it is possible to devise examples whereby cascading of ciphers (Def-
inition 7.29) actually reduces security. However, Fact 7.42 holds under a wide variety of
attack models and meaningful definitions of “breaking”.

7.42 Fact A cascade of n (independently keyed) ciphers is at least as difficult to break as the
first component cipher. Corollary: for stage ciphers which commute (e.g., additive stream
ciphers), a cascade is at least as strong as the strongest component cipher.

Fact 7.42 does not apply to product ciphers consisting of component ciphers which may
have dependent keys (e.g., two-key triple-encryption); indeed, keying dependencies across
stages may compromise security entirely, as illustrated by a two-stage cascade wherein the
components are two binary additive stream ciphers using an identical keystream – in this
case, the cascade output is the original plaintext.

Fact 7.42 may suggest the following practical design strategy: cascade a set of key-
stream generators each of which relies on one or more different design principles. It is not
clear, however, if this is preferable to one large keystream generator which relies on a single
principle. The cascade may turn out to be less secure for a fixed set of parameters (number
of key bits, block size), since ciphers built piecewise may often be attacked piecewise.

7.3 Classical ciphers and historical development

The term classical ciphers refers to encryption techniques which have become well-known
over time, and generally created prior to the second half of the twentieth century (in some
cases, many hundreds of years earlier). Many classical techniques are variations of sim-
ple substitution and simple transposition. Some techniques that are not technically block
ciphers are also included here for convenience and context.
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Classical ciphers and techniques are presented under §7.3 for historical and pedagogi-
cal reasons only. They illustrate important basic principles and common pitfalls. However,
since these techniques are neither sophisticated nor secure against current cryptanalytic ca-
pabilities, they are not generally suitable for practical use.

7.3.1 Transposition ciphers (background)

For a simple transposition cipher with fixed period t, encryption involves grouping the
plaintext into blocks of t characters, and applying to each block a single permutation e on
the numbers 1 through t. More precisely, the ciphertext corresponding to plaintext block
m = m1 . . .mt is c = Ee(m) = me(1) . . .me(t). The encryption key is e, which implic-
itly defines t; the key space K has cardinality t! for a given value t. Decryption involves
use of the permutation d which inverts e. The above corresponds to Definition 1.32.

The mathematical notation obscures the simplicity of the encryption procedure, as is
evident from Example 7.43.

7.43 Example (simple transposition) Consider a simple transposition cipher with t = 6 and
e = (6 4 1 3 5 2). The messagem = CAESAR is encrypted to c = RSCEAA. Decryption
uses the inverse permutation d = (3 6 4 2 5 1). The transposition may be represented by
a two-row matrix with the second indicating the position to which the element indexed by
the corresponding number of the first is mapped to:

(
1 2 3 4 5 6
3 6 4 2 5 1

)
. Encryption may be done

by writing a block of plaintext under headings “3 6 4 2 5 1”, and then reading off the
characters under the headings in numerical order. �

7.44 Note (terminology: transposition vs. permutation) While the term “transposition” is tra-
ditionally used to describe a transposition cipher, the mapping of Example 7.43 may alter-
nately be called a permutation on the set {1, 2, . . . , 6}. The latter terminology is used, for
example, in substitution-permutation networks, and in DES (§7.4).

A mnemonic keyword may be used in place of a key, although this may seriously de-
crease the key space entropy. For example, for n = 6, the keyword “CIPHER” could be
used to specify the column ordering 1, 5, 4, 2, 3, 6 (by alphabetic priority).

7.45 Definition Sequential composition of two or more simple transpositions with respective
periods t1, t2, . . . , ti is called a compound transposition.

7.46 Fact The compound transposition of Definition 7.45 is equivalent to a simple transposition
of period t = lcm(t1, . . . , ti).

7.47 Note (recognizing simple transposition) Although simple transposition ciphers alter de-
pendencies between consecutive characters, they are easily recognized because they pre-
serve the frequency distribution of each character.

7.3.2 Substitution ciphers (background)

This section considers the following types of classical ciphers: simple (or mono-alphabetic)
substitution, polygram substitution, and homophonic substitution. The difference between
codes and ciphers is also noted. Polyalphabetic substitution ciphers are considered in §7.3.3.
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(i) Mono-alphabetic substitution

Suppose the ciphertext and plaintext character sets are the same. Let m = m1m2m3 . . .
be a plaintext message consisting of juxtaposed charactersmi ∈ A, whereA is some fixed
character alphabet such as A = {A,B, . . . , Z}. A simple substitution cipher or mono-
alphabetic substitution cipher employs a permutation e over A, with encryption mapping
Ee(m) = e(m1)e(m2)e(m3) . . . . Here juxtaposition indicates concatenation (rather than
multiplication), and e(mi) is the character to whichmi is mapped by e. This corresponds
to Definition 1.27.

7.48 Example (trivial shift cipher/Caesar cipher) A shift cipher is a simple substitution cipher
with the permutation e constrained to an alphabetic shift throughk characters for some fixed
k. More precisely, if |A| = s, andmi is associated with the integer value i, 0 ≤ i ≤ s− 1,
then ci = e(mi) = mi + k mod s. The decryption mapping is defined by d(ci) = ci −
k mod s. For English text, s = 26, and characters A through Z are associated with integers
0 through 25. For k = 1, the messagem = HAL is encrypted to c = IBM. According to
folklore, Julius Caesar used the key k = 3. �

The shift cipher can be trivially broken because there are only s = |A| keys (e.g., s =
26) to exhaustively search. A similar comment holds for affine ciphers (Example 7.49).
More generally, see Fact 7.68.

7.49 Example (affine cipher – historical) The affine cipher on a 26-letter alphabet is defined by
eK(x) = ax+ b mod 26, where 0 ≤ a, b ≤ 25. The key is (a, b). Ciphertext c = eK(x) is
decrypted using dK(c) = (c− b)a−1 mod 26, with the necessary and sufficient condition
for invertibility that gcd(a, 26) = 1. Shift ciphers are a subclass defined by a = 1. �

7.50 Note (recognizing simple substitution) Mono-alphabetic substitution alters the frequency
of individual plaintext characters, but does not alter the frequency distribution of the overall
character set. Thus, comparing ciphertext character frequencies to a table of expected letter
frequencies (unigram statistics) in the plaintext language allows associations between ci-
phertext and plaintext characters. (E.g., if the most frequent plaintext character X occurred
twelve times, then the ciphertext character that X maps to will occur twelve times).

(ii) Polygram substitution

A simple substitution cipher substitutes for single plaintext letters. In contrast, polygram
substitution ciphers involve groups of characters being substituted by other groups of char-
acters. For example, sequences of two plaintext characters (digrams) may be replaced by
other digrams. The same may be done with sequences of three plaintext characters (tri-
grams), or more generally using n-grams.

In full digram substitution over an alphabet of 26 characters, the key may be any of the
262 digrams, arranged in a table with row and column indices corresponding to the first and
second characters in the digram, and the table entries being the ciphertext digrams substi-
tuted for the plaintext pairs. There are then (262)! keys.

7.51 Example (Playfair cipher – historical) A digram substitution may be defined by arrang-
ing the characters of a 25-letter alphabet (I and J are equated) in a 5× 5matrixM . Adja-
cent plaintext characters are paired. The pair (p1, p2) is replaced by the digram (c3, c4) as
follows. If p1 and p2 are in distinct rows and columns, they define the corners of a subma-
trix (possiblyM itself), with the remaining corners c3 and c4; c3 is defined as the character
in the same column as p1. If p1 and p2 are in a common row, c3 is defined as the charac-
ter immediately to the right of p1 and c4 that immediately right of p2 (the first column is

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



240 Ch. 7 Block Ciphers

viewed as being to the right of the last). If p1 and p2 are in the same column, the charac-
ters immediately (circularly) below them are c3 and c4. If p1 = p2, an infrequent plaintext
character (e.g., X) is inserted between them and the plaintext is re-grouped. While crypt-
analysis based on single character frequencies fails for the Playfair cipher (each letter may
be replaced by any other), cryptanalysis employing digram frequencies succeeds. �

The key for a Playfair cipher is the 5 × 5 square. A mnemonic aid may be used to
more easily remember the square. An example is the use of a meaningful keyphrase, with
repeated letters deleted and the remaining alphabet characters included alphabetically at the
end. The keyphrase “PLAYFAIR IS A DIGRAM CIPHER” would define a square with
rows PLAYF, IRSDG, MCHEB, KNOQT, VWXYZ. To avoid the trailing characters always
being from the end of the alphabet, a further shift cipher (Example 7.48) could be applied
to the resulting 25-character string.

Use of keyphrases may seriously reduce the key space entropy. This effect is reduced
if the keyphrase is not directly written into the square. For example, the non-repeated key-
phrase characters might be written into an 8-column rectangle (followed by the remaining
alphabet letters), the trailing columns being incomplete. The 25-character string obtained
by reading the columns vertically is then used to fill the 5× 5 square row by row.

7.52 Example (Hill cipher – historical) An n-gram substitution may be defined using an in-
vertible n × n matrix A = aij as the key to map an n-character plaintextm1 . . .mn to a
ciphertext n-gram ci =

∑n
j=1 aijmj , i = 1, . . . , n. Decryption involves usingA−1. Here

characters A–Z, for example, are associated with integers 0–25. This polygram substitution
cipher is a linear transformation, and falls under known-plaintext attack. �

(iii) Homophonic substitution

The idea of homophonic substitution, introduced in §1.5, is for each fixed key k to asso-
ciate with each plaintext unit (e.g., character)m a set S(k,m) of potential corresponding
ciphertext units (generally all of common size). To encrypt m under k, randomly choose
one element from this set as the ciphertext. To allow decryption, for each fixed key this
one-to-many encryption function must be injective on ciphertext space. Homophonic sub-
stitution results in ciphertext data expansion.

In homophonic substitution, |S(k,m)| should be proportional to the frequency ofm in
the message space. The motivation is to smooth out obvious irregularities in the frequency
distribution of ciphertext characters, which result from irregularities in the plaintext fre-
quency distribution when simple substitution is used.

While homophonic substitution complicates cryptanalysis based on simple frequency
distribution statistics, sufficient ciphertext may nonetheless allow frequency analysis, in
conjunction with additional statistical properties of plaintext manifested in the ciphertext.
For example, in long ciphertexts each element ofS(k,m)will occur roughly the same num-
ber of times. Digram distributions may also provide information.

(iv) Codes vs. ciphers

A technical distinction is made between ciphers and codes. Ciphers are encryption tech-
niques which are applied to plaintext units (bits, characters, or blocks) independent of their
semantic or linguistic meaning; the result is called ciphertext. In contrast, cryptographic
codes operate on linguistic units such as words, groups of words, or phrases, and substitute
(replace) these by designated words, letter groups, or number groups called codegroups.
The key is a dictionary-like codebook listing plaintext units and their corresponding code-
groups, indexed by the former; a corresponding codebook for decoding is reverse-indexed.
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When there is potential ambiguity, codes in this context (vs. ciphers) may be qualified
as cryptographic codebooks, to avoid confusion with error-correcting codes (EC-codes)
used to detect and/or correct non-malicious errors and authentication codes (A-codes, or
MACs as per Definition 9.7) which provide data origin authentication.

Several factors suggest that codes may be more difficult to break than ciphers: the key
(codebook) is vastly larger than typical cipher keys; codes may result in data compression
(cf. Fact 7.71); and statistical analysis is complicated by the large plaintext unit block size
(cf. Note 7.74). Opposing this are several major disadvantages: the coding operation not
being easily automated (relative to an algorithmic mapping); and identical encryption of re-
peated occurrences of plaintext units implies susceptibility to known-plaintext attacks, and
allows frequency analysis based on observed traffic. This implies a need for frequent rekey-
ing (changing the codebook), which is both more costly and inconvenient. Consequently,
codes are not commonly used to secure modern telecommunications.

7.3.3 Polyalphabetic substitutions and Vigenère ciphers
(historical)
A simple substitution cipher involves a single mapping of the plaintext alphabet onto ci-
phertext characters. A more complex alternative is to use different substitution mappings
(called multiple alphabets) on various portions of the plaintext. This results in so-called
polyalphabetic substitution (also introduced in Definition 1.30). In the simplest case, the
different alphabets are used sequentially and then repeated, so the position of each plain-
text character in the source string determines which mapping is applied to it. Under different
alphabets, the same plaintext character is thus encrypted to different ciphertext characters,
precluding simple frequency analysis as per mono-alphabetic substitution (§7.3.5).

The simple Vigenère cipher is a polyalphabetic substitution cipher, introduced in Ex-
ample 1.31. The definition is repeated here for convenience.

7.53 Definition A simple Vigenère cipher of period t, over an s-character alphabet, involves
a t-character key k1k2 . . . kt. The mapping of plaintext m = m1m2m3 . . . to ciphertext
c = c1c2c3 . . . is defined on individual characters by ci = mi+ki mod s, where subscript
i in ki is taken modulo t (the key is re-used).

The simple Vigenère uses t shift ciphers (see Example 7.48), defined by t shift values
ki, each specifying one of s (mono-alphabetic) substitutions; ki is used on the characters
in position i, i + s, i + 2s, ... . In general, each of the t substitutions is different; this is
referred to as using t alphabets rather than a single substitution mapping. The shift cipher
(Example 7.48) is a simple Vigenère with period t = 1.

7.54 Example (Beaufort variants of Vigenère) Compared to the simple Vigenère mapping ci =
mi + ki mod s, the Beaufort cipher has ci = ki −mi mod s, and is its own inverse. The
variant Beaufort has encryption mapping ci = mi − ki mod s. �

7.55 Example (compound Vigenère) The compound Vigenère has encryption mapping ci =
mi + (k

1
i + k

2
i + · · ·+ k

r
i ) mod s, where in general the keys kj , 1 ≤ j ≤ r, have distinct

periods tj , and the subscript i in kji , indicating the ith character of kj , is taken modulo tj .
This corresponds to the sequential application of r simple Vigenères, and is equivalent to a
simple Vigenère of period lcm(t1, . . . , tr). �
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7.56 Example (single mixed alphabet Vigenère) A simple substitution mapping defined by a
general permutation e (not restricted to an alphabetic shift), followed by a simple Vigenère,
is defined by the mapping ci = e(mi)+ki mod s, with inversemi = e−1(ci−ki) mod s.
An alternative is a simple Vigenère followed by a simple substitution: ci = e(mi+ki mod
s), with inversemi = e−1(ci)− ki mod s. �

7.57 Example (full Vigenère) In a simple Vigenère of period t, replace the mapping defined by
the shift value ki (for shifting charactermi) by a general permutation ei of the alphabet. The
result is the substitution mapping ci = ei(mi), where the subscript i in ei is taken modulo
t. The key consists of t permutations e1, . . . , et. �

7.58 Example (running-key Vigenère) If the keystream ki of a simple Vigenère is as long as
the plaintext, the cipher is called a running-key cipher. For example, the key may be mean-
ingful text from a book. �

While running-key ciphers prevent cryptanalysis by the Kasiski method (§7.3.5), if the
key has redundancy, cryptanalysis exploiting statistical imbalances may nonetheless suc-
ceed. For example, when encrypting plaintext English characters using a meaningful text
as a running key, cryptanalysis is possible based on the observation that a significant pro-
portion of ciphertext characters results from the encryption of high-frequency running text
characters with high-frequency plaintext characters.

7.59 Fact A running-key cipher can be strengthened by successively enciphering plaintext un-
der two or more distinct running keys. For typical English plaintext and running keys, it
can be shown that iterating four such encipherments appears unbreakable.

7.60 Definition An auto-key cipher is a cipher wherein the plaintext itself serves as the key
(typically subsequent to the use of an initial priming key).

7.61 Example (auto-key Vigenère) In a running-key Vigenère (Example 7.58) with an s-char-
acter alphabet, define a priming key k = k1k2 . . . kt. Plaintext charactersmi are encrypted
as ci = mi + ki mod s for 1 ≤ i ≤ t (simplest case: t = 1). For i > t, ci = (mi +
mi−t) mod s. An alternative involving more keying material is to replace the simple shift
by a full Vigenère with permutations ei, 1 ≤ i ≤ s, defined by the key ki or charactermi:
for 1 ≤ i ≤ t, ci = eki(mi), and for i > t, ci = emi−t(mi). �

An alternative to Example 7.61 is to auto-key a cipher using the resulting ciphertext
as the key: for example, for i > t, ci = (mi + ci−t) mod s. This, however, is far less
desirable, as it provides an eavesdropping cryptanalyst the key itself.

7.62 Example (Vernam viewed as a Vigenère) Consider a simple Vigenère defined by ci =
mi + ki mod s. If the keystream is truly random and independent – as long as the plain-
text and never repeated (cf. Example 7.58) – this yields the unconditionally secure Vernam
cipher (Definition 1.39; §6.1.1), generalized from a binary to an arbitrary alphabet. �

7.3.4 Polyalphabetic cipher machines and rotors (historical)

The Jefferson cylinder is a deceptively simple device which implements a polyalphabetic
substitution cipher; conceived in the late 18th century, it had remarkable cryptographic
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strength for its time. Polyalphabetic substitution ciphers implemented by a class of rotor-
based machines were the dominant cryptographic tool in World War II. Such machines, in-
cluding the Enigma machine and those of Hagelin, have an alphabet which changes con-
tinuously for a very long period before repeating; this provides protection against Kasiski
analysis and methods based on the index of coincidence (§7.3.5).

(i) Jefferson cylinder

The Jefferson cylinder (Figure 7.3) implements a polyalphabetic substitution cipher while
avoiding complex machinery, extensive user computations, and Vigenère tableaus. A solid
cylinder 6 inches long is sliced into 36 disks. A rod inserted through the cylinder axis allows
the disks to rotate. The periphery of each disk is divided into 26 parts. On each disk, the
letters A–Z are inscribed in a (different) random ordering. Plaintext messages are encrypted
in 36-character blocks. A reference bar is placed along the cylinder’s length. Each of the
36 wheels is individually rotated to bring the appropriate character (matching the plaintext
block) into position along the reference line. The 25 other parallel reference positions then
each define a ciphertext, from which (in an early instance of randomized encryption) one is
selected as the ciphertext to transmit.

A
S

Q
B

N

R C R L
X

S

T F R F
I

K D L M O
J E H Y

P

O W S Z

Figure 7.3: The Jefferson cylinder.

The second party possesses a cylinder with identically marked and ordered disks (1–
36). The ciphertext is decrypted by rotating each of the 36 disks to obtain characters along
a fixed reference line matching the ciphertext. The other 25 reference positions are exam-
ined for a recognizable plaintext. If the original message is not recognizable (e.g., random
data), both parties agree beforehand on an index 1 through 25 specifying the offset between
plaintext and ciphertext lines.

To accommodate plaintext digits 0–9 without extra disk sections, each digit is per-
manently assigned to one of 10 letters (a,e,i,o,u,y and f,l,r,s) which is encrypted as above
but annotated with an overhead dot, identifying that the procedure must be reversed. Re-
ordering disks (1 through 36) alters the polyalphabetic substitution key. The number of pos-
sible orderings is 36! ≈ 3.72× 1041. Changing the ordering of letters on each disk affords
25! further mappings (per disk), but is more difficult in practice.

(ii) Rotor-based machines – technical overview

A simplified generic rotor machine (Figure 7.4) consists of a number of rotors (wired code-
wheels) each implementing a different fixed mono-alphabetic substitution, mapping a char-
acter at its input face to one on its output face. A plaintext character input to the first rotor
generates an output which is input to the second rotor, and so on, until the final ciphertext
character emerges from the last. For fixed rotor positions, the bank of rotors collectively
implements a mono-alphabetic substitution which is the composition of the substitutions
defined by the individual rotors.

To provide polyalphabetic substitution, the encipherment of each plaintext character
causes various rotors to move. The simplest case is an odometer-like movement, with a
single rotor stepped until it completes a full revolution, at which time it steps the adjacent
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Figure 7.4: A rotor-based machine.

rotor one position, and so on. Stepping a rotor changes the mono-alphabetic substitution
it defines (the active mapping). More precisely, each rotor Ri effects a mono-alphabetic
substitution fi. Ri can rotate into ti positions (e.g., ti = 26). When offset j places from a
reference setting,Ri maps input a to fi(a− j)+ j, where both the input to fi and the final
output are reduced mod 26.

The cipher key is defined by the mono-alphabetic substitutions determined by the fixed
wheel wirings and initial rotor positions. Re-arranging the order of rotors provides addi-
tional variability. Providing a machine with more rotors than necessary for operation at
any one time allows further keying variation (by changing the active rotors).

7.63 Fact Two properties of rotor machines desirable for security-related reasons are: (1) long
periods; and (2) state changes which are almost all “large”.

The second property concerns the motion of rotors relative to each other, so that the
sub-mappings between rotor faces change when the state changes. Rotor machines with
odometer-like state changes fail to achieve this second property.

7.64 Note (rotor machine output methods) Rotor machines were categorized by their method of
providing ciphertext output. In indicating machines, ciphertext output characters are indi-
cated by means such as lighted lamps or displayed characters in output apertures. In print-
ing machines, ciphertext is printed or typewritten onto an output medium such as paper.
With on-line machines, output characters are produced in electronic form suitable for di-
rect transmission over telecommunications media.

(iii) Rotor-based machines – historical notes

A number of individuals are responsible for the development of early machines based on ro-
tor principles. In 1918, the American E.H. Hebern built the first rotor apparatus, based on an
earlier typewriting machine modified with wired connections to generate a mono-alphabetic
substitution. The output was originally by lighted indicators. The first rotor patent was filed
in 1921, the year Hebern Electric Code, Inc. became the first U.S. cipher machine company
(and first to bankrupt in 1926). The U.S. Navy (circa 1929-1930 and some years thereafter)
used a number of Hebern’s five-rotor machines.

In October 1919, H.A. Koch filed Netherlands patent no.10,700 (“Geheimschrijfma-
chine” – secret writing machine), demonstrating a deep understanding of rotor principles;
no machine was built. In 1927, the patent rights were assigned to A. Scherbius.

The German inventor Scherbius built a rotor machine called the Enigma. Model A was
replaced by Model B with typewriter output, and a portable Model C with indicator lamps.
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The company set up in 1923 dissolved in 1934, but thereafter the Germans used the portable
battery-powered Enigma, including for critical World War II operations.

In October 1919, three days after Koch, A.G. Damm filed Swedish patent no.52,279 de-
scribing a double-rotor device. His firm was joined by the Swede, B. Hagelin, whose 1925
modification yielded the B-21 rotor machine (with indicating lamps) used by the Swedish
army. The B-21 had keywheels with varying number of teeth or gears, each of which was
associated with a settable two-state pin. The period of the resulting polyalphabetic substi-
tution was the product of the numbers of keywheel pins; the key was defined by the state of
each pin and the initial keywheel positions. Hagelin later produced other models: B-211 (a
printing machine); a more compact (phone-sized) model C-36 for the French in 1934; and
based on alterations suggested by Friedman and others, model C-48 (of which over 140 000
were produced) which was called M-209 when used by the U.S. Army as a World War II
field cipher. His 1948 Swiss factory later produced: model C-52, a strengthened version of
M-209 (C-48) with period exceeding 2.75× 109 (with keywheels of 47, 43, 41, 37, 31, 29
pins); CD-55, a pocket-size version of the C-52; and T-55, an on-line version of the same,
modifiable to use a one-time tape. A further model was CD-57.

7.65 Note (Enigma details) The Enigma initially had three rotors Ri, each with 26 positions.
R1 steppedR2 which steppedR3 odometer-like, withR2 also stepping itself; the period was
26 · 25 · 26 ≈ 17 000. The key consisted of the initial positions of these rotors (≈ 17 000
choices), their order (3! = 6 choices), and the state of a plugboard, which implemented
a fixed but easily changed (e.g., manually, every hour) mono-alphabetic substitution (26!
choices), in addition to that carried out by rotor combinations.

7.66 Note (Hagelin M-209 details) The Hagelin M-209 rotor machine implements a polyalpha-
betic substitution using 6 keywheels – more specifically, a self-decrypting Beaufort cipher
(Example 7.54),Eki(mi) = ki−mi mod 26, of period 101 405 850 =26·25·23·21·19·17
letters. Thus for a fixed ordered set of 6 keywheels, the cipher period exceeds 108. ki may
be viewed as the ith character in the key stream, as determined by a particular ordering of
keywheels, their pin settings, and starting positions. All keywheels rotate one position for-
ward after each character is enciphered. The wheels simultaneously return to their initial
position only after a period equal to the least-common-multiple of their gear-counts, which
(since these are co-prime) is their product. A ciphertext-only attack is possible with 1000-
2000 characters, using knowledge of the machine’s internal mechanical details, and assum-
ing natural language redundancy in the plaintext; a known-plaintext attack is possible with
50-100 characters.

7.3.5 Cryptanalysis of classical ciphers (historical)

This section presents background material on redundancy and unicity distance, and tech-
niques for cryptanalysis of classical ciphers,

(i) Redundancy

All natural languages are redundant. This redundancy results from linguistic structure. For
example, in English the letter “E” appears far more frequently than “Z”, “Q” is almost al-
ways followed by “U”, and “TH” is a common digram.

An alphabet with 26 characters (e.g., Roman alphabet) can theoretically carry up to
lg 26 = 4.7 bits of information per character. Fact 7.67 indicates that, on average, far less
information is actually conveyed by a natural language.
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7.67 Fact The estimated average amount of information carried per character (per-character en-
tropy) in meaningful English alphabetic text is 1.5 bits.

The per-character redundancy of English is thus about 4.7− 1.5 = 3.2 bits.

7.68 Fact Empirical evidence suggests that, for essentially any simple substitution cipher on a
meaningful message (e.g., with redundancy comparable to English), as few as 25 ciphertext
characters suffices to allow a skilled cryptanalyst to recover the plaintext.

(ii) Unicity distance and random cipher model

7.69 Definition The unicity distance of a cipher is the minimum amount of ciphertext (number
of characters) required to allow a computationally unlimited adversary to recover the unique
encryption key.

The unicity distance is primarily a theoretical measure, useful in relation to uncondi-
tional security. A small unicity distance does not necessarily imply that a block cipher is
insecure in practice. For example, consider a 64-bit block cipher with a unicity distance
of two ciphertext blocks. It may still be computationally infeasible for a cryptanalyst (of
reasonable but bounded computing power) to recover the key, although theoretically there
is sufficient information to allow this.

The random cipher model (Definition 7.70) is a simplified model of a block cipher pro-
viding a reasonable approximation for many purposes, facilitating results on block cipher
properties not otherwise easily established (e.g., Fact 7.71).

7.70 Definition Let C andK be random variables, respectively, denoting the ciphertext block
and the key, and let D denote the decryption function. Under the random cipher model,
DK(C) is a random variable uniformly distributed over all possible pre-images ofC (mean-
ingful messages and otherwise, with and without redundancy).

In an intuitive sense, a random cipher as per the model of Definition 7.70 is a random
mapping. (A more precise approximation would be as a random permutation.)

7.71 Fact Under the random cipher model, the expected unicity distanceN0 of a cipher isN0 =
H(K)/D, where H(K) is the entropy of the key space (e.g., 64 bits for 264 equiprobable
keys), andD is the plaintext redundancy (in bits/character).

For a one-time pad, the unbounded entropy of the key space implies, by Fact 7.71, that
the unicity distance is likewise unbounded. This is consistent with the one-time pad being
theoretically unbreakable.

Data compression reduces redundancy. Fact 7.71 implies that data compression prior
to encryption increases the unicity distance, thus increasing security. If the plaintext con-
tains no redundancy whatsoever, then the unicity distance is infinite; that is, the system is
theoretically unbreakable under a ciphertext-only attack.

7.72 Example (unicity distance – transposition cipher) The unicity distance of a simple trans-
position cipher of period t can be estimated under the random cipher model using Fact 7.71,
and the assumption of plaintext redundancy of D = 3.2 bits/character. In this case,
H(K)/D = lg(t!)/3.2 and for t = 12 the estimated unicity distance is 9 characters,
which is very crude, this being less than one 12-character block. For t = 27, the esti-
mated unicity distance is a more plausible 29 characters; this can be computed using Stir-
ling’s approximation of Fact 2.57(iii) (t! ≈

√
2πt(t/e)t, for large t and e = 2.718) as

H(K)/D = lg(t!)/3.2 ≈ (0.3t) · lg(t/e). �
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7.73 Example (unicity distance – simple substitution) The number of keys for a mono-alphab-
etic substitution cipher over alphabetA is |K| = s!, where s = |A|. For example, s = 26
(Roman alphabet) yields 26! ≈ 4×1026 keys. Assuming equiprobable keys, an estimate of
the entropy of the key space is then (cf. Example 7.72)H(K) = lg(26!) ≈ 88.4 bits. As-
suming English text withD = 3.2 bits of redundancy per character (Fact 7.67), a theoretical
estimate of the unicity distance of a simple substitution cipher is H(K)/D = 88.4/3.2 ≈
28 characters. This agrees closely with empirical evidence (Fact 7.68). �
(iii) Language statistics

Cryptanalysis of classical ciphers typically relies on redundancy in the source language
(plaintext). In many cases a divide-and-conquerapproach is possible, whereby the plaintext
or key is recovered piece by piece, each facilitating further recovery.

Mono-alphabetic substitution on short plaintext blocks (e.g., Roman alphabet char-
acters) is easily defeated by associating ciphertext characters with plaintext characters
(Note 7.50). The frequency distribution of individual ciphertext characters can be compared
to that of single characters in the source language, as given by Figure 7.5 (estimated from
1964 English text). This is facilitated by grouping plaintext letters by frequency into high,
medium, low, and rare classes; focussing on the high-frequency class, evidence support-
ing trial letter assignments can be obtained by examining how closely hypothesized assign-
ments match those of the plaintext language. Further evidence is available by examination
of digram and trigram frequencies. Figure 7.6 gives the most common English digrams as
a percentage of all digrams; note that of 262 = 676 possible digrams, the top 15 account for
27% of all occurrences. Other examples of plaintext redundancy appearing in the cipher-
text include associations of vowels with consonants, and repeated letters in pattern words
(e.g., “that”, “soon”, “three”).
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Figure 7.5: Frequency of single characters in English text.

7.74 Note (large blocks preclude statistical analysis) An n-bit block size implies 2n plaintext
units (“characters”). Compilation of frequency statistics on plaintext units thus becomes
infeasible as the block size of the simple substitution increases; for example, this is clearly
infeasible for DES (§7.4), where n = 64.
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Cryptanalysis of simple transposition ciphers is similarly facilitated by source language
statistics (see Note 7.47). Cryptanalyzing transposed blocks resembles solving an anagram.
Attempts to reconstruct common digrams and trigrams are facilitated by frequency statis-
tics. Solutions may be constructed piecewise, with the appearance of digrams and trigrams
in trial decryptions confirming (partial) success.
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Figure 7.6: Frequency of 15 common digrams in English text.

Cryptanalysis of polyalphabetic ciphers is possible by various methods, including Ka-
siski’s method and methods based on the index of coincidence, as discussed below.

(iv) Method of Kasiski (vs. polyalphabetic substitution)

Kasiski’s method provides a general technique for cryptanalyzing polyalphabetic ciphers
with repeated keywords, such as the simple Vigenère cipher (Definition 7.53), based on the
following observation: repeated portions of plaintext encrypted with the same portion of
the keyword result in identical ciphertext segments. Consequently one expects the num-
ber of characters between the beginning of repeated ciphertext segments to be a multiple of
the keyword length. Ideally, it suffices to compute the greatest common divisor of the var-
ious distances between such repeated segments, but coincidental repeated ciphertext seg-
ments may also occur. Nonetheless, an analysis (Kasiski examination) of the common fac-
tors among all such distances is possible; the largest factor which occurs most commonly
is the most likely keyword length. Repeated ciphertext segments of length 4 or longer are
most useful, as coincidental repetitions are then less probable.

The number of letters in the keyword indicates the number of alphabets t in the polyal-
phabetic substitution. Ciphertext characters can then be partitioned into t sets, each of
which is then the result of a mono-alphabetic substitution. Trial values for t are confirmed
if the frequency distribution of the (candidate) mono-alphabetic groups matches the fre-
quency distribution of the plaintext language. For example, the profile for plaintext English
(Figure 7.5) exhibits a long trough characterizing uvwxyz, followed by a spike at a, and
preceded by the triple-peak of rst. The resulting mono-alphabeticportions can be solved in-
dividually, with additional information available by combining their solution (based on di-
grams, probable words, etc.). If the source language is unknown, comparing the frequency
distribution of ciphertext characters to that of candidate languages may allow determination
of the source language itself.

(v) Index of coincidence (vs. polyalphabetic substitution)

The index of coincidence (IC) is a measure of the relative frequency of letters in a cipher-
text sample, which facilitates cryptanalysis of polyalphabetic ciphers by allowing determi-
nation of the period t (as an alternative to Kasiski’s method). For concreteness, consider a
Vigènere cipher and assume natural language English plaintext.
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Let the ciphertext alphabet be {a0, a1, . . . , an−1}, and let pi be the unknown probabil-
ity that an arbitrarily chosen character in a random ciphertext is ai. The measure of rough-
ness measures the deviation of ciphertext characters from a flat frequency distribution as
follows:

MR =
n−1∑
i=0

(
pi −

1

n

)2
=

n−1∑
i=0

pi
2 −

1

n
(7.1)

The minimum value isMRmin = 0, corresponding to a flat distribution (for equiprobable
ai, pi = 1/n). The maximum value occurs when the frequency distribution of pi has great-
est variability, corresponding to a mono-alphabetic substitution (the plaintext frequency dis-
tribution is then manifested). Define this maximum valueMRmax = κp − 1/n, where κp
corresponds to

∑
pi
2 when pi are plaintext frequencies. For English as per Figure 7.5, the

maximum value is MR= κp− 1/n ≈ 0.0658−0.0385 = 0.0273. (This varies with letter
frequency estimates; κp = 0.0667, yielding κp − 1/n = 0.0282 is commonly cited, and is
used in Table 7.1.) While MR cannot be computed directly from a ciphertext sample (since
the period t is unknown, the mono-alphabetic substitutions cannot be separated), it may be
estimated from the frequency distribution of ciphertext characters as follows.

Let fi denote the number of appearances of ai in anL-character ciphertext sample (thus∑
fi = L). The number of pairs of letters among these L is L(L− 1)/2, of which fi(fi−

1)/2 are the pair (ai, ai) for any fixed character ai. Define IC as the probability that two
characters arbitrarily chosen from the given ciphertext sample are equal:

IC =

∑n−1
i=0

(
fi
2

)
(
L
2

) =

∑n−1
i=0 fi(fi − 1)

L(L− 1)
(7.2)

Independent of this given ciphertext sample, the probability that two randomly chosen ci-
phertext characters are equal is

∑n−1
i=0 pi

2. Thus (comparing word definitions) IC is an esti-
mate of

∑
pi
2, and by equation (7.1), thereby an estimate of MR + 1/n. Moreover, IC can

be directly computed from a ciphertext sample, allowing estimation of MR itself. Since
MR varies from 0 to κp− 1/n, one expects IC to range from 1/n (for polyalphabetic sub-
stitution with infinite period) to κp (for mono-alphabetic substitution). More precisely, the
following result may be established.

7.75 Fact For a polyalphabetic cipher of period t, E(IC) as given below is the expected value
of the index of coincidence for a ciphertext string of length L, where n is the number of
alphabet characters, κr = 1/n, and κp is given in Table 7.1:

E(IC) =
1

t
·
L− t

L− 1
· κp +

t− 1

t
·
L

L− 1
· κr (7.3)

(p in κp is intended to denote a plaintext frequency distribution, while the r in κr denotes a
distribution for random characters.) For Roman-alphabet languages, n = 26 implies κr =
0.03846; for the Russian Cyrillic alphabet, n = 30.

7.76 Example (estimating polyalphabetic period using IC) Tabulating the expected values for
IC for periods t = 1, 2, . . . using Equation (7.3) (which is essentially independent of L
for large L and small t), and comparing this to that obtained from a particular ciphertext
using Equation (7.2) allows a crude estimate of the period t of the cipher, e.g., whether it is
mono-alphabetic or polyalphabetic with small period. Candidate values t in the range thus
determined may be tested for correctness by partitioning ciphertext characters into groups
of letters separated by t ciphertext positions, and in one or more such groups, comparing
the character frequency distribution to that of plaintext. �
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Language κp

French 0.0778
Spanish 0.0775
German 0.0762
Italian 0.0738
English 0.0667
Russian 0.0529

Table 7.1: Estimated roughness constant κp for various languages (see Fact 7.75).

A polyalphabetic period tmay be determined either by Example 7.76 or the alternative
of Example 7.77, based on the same underlying ideas. Once t is determined, the situation
is as per after successful completion of the Kasiski method.

7.77 Example (determining period by ciphertext auto-correlation) Given a sample of polyal-
phabetic ciphertext, the unknown period tmay be determined by examining the number of
coincidences when the ciphertext is auto-correlated. More specifically, given a ciphertext
sample c1c2 . . . cL, starting with t = 1, count the total number of occurrences ci = ci+t for
1 ≤ i ≤ L− t. Repeat for t = 2, 3, . . . and tabulate the counts (or plot a bar graph). The
actual period t∗ is revealed as follows: for values t that are a multiple of t∗, the counts will
be noticeably higher (easily recognized as spikes on the bar graph). In fact, for L appro-
priately large, one expects approximatelyL ·κp coincidences in this case, and significantly
fewer in other cases. �

In the auto-correlation method of coincidences of Example 7.77, the spikes on the bar
graph reveal the period, independent of the source language. Once the period is determined,
ciphertext characters from like alphabets can be grouped, and the profile of single-character
letter frequencies among these, which differs for each language, may be used to determine
the plaintext language.

7.4 DES

The Data Encryption Standard (DES) is the most well-known symmetric-key block cipher.
Recognized world-wide, it set a precedent in the mid 1970s as the first commercial-grade
modern algorithm with openly and fully specified implementation details. It is defined by
the American standard FIPS 46–2.

7.4.1 Product ciphers and Feistel ciphers

The design of DES is related to two general concepts: product ciphers and Feistel ciphers.
Each involves iterating a common sequence or round of operations.

The basic idea of a product cipher (see §1.5.3) is to build a complex encryption func-
tion by composing several simple operations which offer complementary, but individually
insufficient, protection (note cascade ciphers per Definition 7.29 use independent keys). Ba-
sic operations include transpositions, translations (e.g., XOR) and linear transformations,
arithmetic operations, modular multiplication, and simple substitutions.
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7.78 Definition A product cipher combines two or more transformations in a manner intending
that the resulting cipher is more secure than the individual components.

7.79 Definition A substitution-permutation (SP) network is a product cipher composed of a
number of stages each involving substitutions and permutations (Figure 7.7).

S S S S

P

ciphertext

S S S S

P

plaintext

Figure 7.7: Substitution-permutation (SP) network.

Many SP networks are iterated ciphers as per Definition 7.80.

7.80 Definition An iterated block cipher is a block cipher involving the sequential repetition of
an internal function called a round function. Parameters include the number of rounds r, the
block bitsize n, and the bitsize k of the input keyK from which r subkeysKi (round keys)
are derived. For invertibility (allowing unique decryption), for each value Ki the round
function is a bijection on the round input.

7.81 Definition A Feistel cipher is an iterated cipher mapping a 2t-bit plaintext (L0, R0), for
t-bit blocks L0 and R0, to a ciphertext (Rr, Lr), through an r-round process where r ≥ 1.

For 1 ≤ i ≤ r, round i maps (Li−1, Ri−1)
Ki→ (Li, Ri) as follows: Li = Ri−1, Ri =

Li−1⊕f(Ri−1,Ki), where each subkeyKi is derived from the cipher keyK.

Typically in a Feistel cipher, r ≥ 3 and often is even. The Feistel structure specifically
orders the ciphertext output as (Rr , Lr) rather than (Lr, Rr); the blocks are exchanged
from their usual order after the last round. Decryption is thereby achieved using the same
r-round process but with subkeys used in reverse order,Kr throughK1; for example, the
last round is undone by simply repeating it (see Note 7.84). The f function of the Feistel
cipher may be a product cipher, though f itself need not be invertible to allow inversion of
the Feistel cipher.

Figure 7.9(b) illustrates that successive rounds of a Feistel cipher operate on alternat-
ing halves of the ciphertext, while the other remains constant. Note the round function of
Definition 7.81 may also be re-written to eliminate Li: Ri = Ri−2⊕f(Ri−1,Ki). In this
case, the final ciphertext output is (Rr, Rr−1), with input labeled (R−1, R0).
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7.4.2 DES algorithm

DES is a Feistel cipher which processes plaintext blocks of n = 64 bits, producing 64-bit
ciphertext blocks (Figure 7.8). The effective size of the secret keyK is k = 56 bits; more
precisely, the input key K is specified as a 64-bit key, 8 bits of which (bits 8, 16, . . . , 64)
may be used as parity bits. The 256 keys implement (at most) 256 of the 264! possible bijec-
tions on 64-bit blocks. A widely held belief is that the parity bits were introduced to reduce
the effective key size from 64 to 56 bits, to intentionally reduce the cost of exhaustive key
search by a factor of 256.

64 64
P CC

56

K

keyK

ciphertext C

plaintext P
56

K

PDES DES−1

Figure 7.8: DES input-output.

Full details of DES are given in Algorithm 7.82 and Figures 7.9 and 7.10. An overview
follows. Encryption proceeds in 16 stages or rounds. From the input keyK, sixteen 48-bit
subkeysKi are generated, one for each round. Within each round, 8 fixed, carefully selected
6-to-4 bit substitution mappings (S-boxes) Si, collectively denoted S, are used. The 64-bit
plaintext is divided into 32-bit halves L0 and R0. Each round is functionally equivalent,
taking 32-bit inputs Li−1 and Ri−1 from the previous round and producing 32-bit outputs
Li and Ri for 1 ≤ i ≤ 16, as follows:

Li = Ri−1; (7.4)

Ri = Li−1 ⊕ f(Ri−1, Ki), where f(Ri−1, Ki) = P (S(E(Ri−1)⊕Ki))(7.5)

HereE is a fixed expansion permutation mappingRi−1 from 32 to 48 bits (all bits are used
once; some are used twice). P is another fixed permutation on 32 bits. An initial bit per-
mutation (IP) precedes the first round; following the last round, the left and right halves are
exchanged and, finally, the resulting string is bit-permuted by the inverse of IP. Decryption
involves the same key and algorithm, but with subkeys applied to the internal rounds in the
reverse order (Note 7.84).

A simplified view is that the right half of each round (after expanding the 32-bit input
to 8 characters of 6 bits each) carries out a key-dependent substitution on each of 8 charac-
ters, then uses a fixed bit transposition to redistribute the bits of the resulting characters to
produce 32 output bits.

Algorithm 7.83 specifies how to compute the DES round keysKi, each of which con-
tains 48 bits of K. These operations make use of tables PC1 and PC2 of Table 7.4, which
are called permuted choice 1 and permuted choice 2. To begin, 8 bits (k8, k16, . . . , k64) of
K are discarded (by PC1). The remaining 56 bits are permuted and assigned to two 28-bit
variables C and D; and then for 16 iterations, both C and D are rotated either 1 or 2 bits,
and 48 bits (Ki) are selected from the concatenated result.
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7.82 Algorithm Data Encryption Standard (DES)

INPUT: plaintextm1 . . .m64; 64-bit keyK = k1 . . . k64 (includes 8 parity bits).
OUTPUT: 64-bit ciphertext block C = c1 . . . c64. (For decryption, see Note 7.84.)

1. (key schedule) Compute sixteen 48-bit round keysKi fromK using Algorithm 7.83.
2. (L0, R0) ← IP(m1m2 . . .m64). (Use IP from Table 7.2 to permute bits; split the

result into left and right 32-bit halvesL0 = m58m50 . . .m8,R0 = m57m49 . . .m7.)
3. (16 rounds) for i from 1 to 16, compute Li and Ri using Equations (7.4) and (7.5)

above, computing f(Ri−1, Ki) = P (S(E(Ri−1)⊕Ki)) as follows:

(a) ExpandRi−1 = r1r2 . . . r32 from 32 to 48 bits using E per Table 7.3:
T ← E(Ri−1). (Thus T = r32r1r2 . . . r32r1.)

(b) T ′ ← T⊕Ki. Represent T ′ as eight 6-bit character strings: (B1, . . . , B8) =
T ′.

(c) T ′′ ← (S1(B1), S2(B2), . . . S8(B8)). (Here Si(Bi) maps Bi = b1b2 . . . b6
to the 4-bit entry in row r and column c of Si in Table 7.8, page 260 where
r = 2 · b1+ b6, and b2b3b4b5 is the radix-2 representation of 0 ≤ c ≤ 15. Thus
S1(011011) yields r = 1, c = 13, and output 5, i.e., binary 0101.)

(d) T ′′′ ← P (T ′′). (UseP per Table 7.3 to permute the 32 bits ofT ′′ = t1t2 . . . t32,
yielding t16t7 . . . t25.)

4. b1b2 . . . b64 ← (R16, L16). (Exchange final blocks L16, R16.)

5. C ← IP−1(b1b2 . . . b64). (Transpose using IP−1 from Table 7.2;C = b40b8 . . . b25.)

IP
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

IP−1

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Table 7.2: DES initial permutation and inverse (IP and IP−1).

E

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

P

16 7 20 21
29 12 28 17

1 15 23 26
5 18 31 10
2 8 24 14

32 27 3 9
19 13 30 6
22 11 4 25

Table 7.3: DES per-round functions: expansion E and permutation P .
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R0

L1 R1

L15 R15
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initial
permutation

output

c1c2 · · · c64

64
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Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1,Ki)
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Figure 7.9: DES computation path.
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S1 S2 S3 S4 S5 S6 S7 S8

permutation

f(Ri−1,Ki) = P (S(E(Ri−1)⊕Ki))

4

Ri−1 Ki

8× 4 bits

8× 6 bits

substitution

P

32

32

expansion

32

48

48

48

6

E

Figure 7.10: DES inner function f .

7.83 Algorithm DES key schedule

INPUT: 64-bit keyK = k1 . . . k64 (including 8 odd-parity bits).
OUTPUT: sixteen 48-bit keysKi, 1 ≤ i ≤ 16.

1. Define vi, 1 ≤ i ≤ 16 as follows: vi = 1 for i ∈ {1, 2, 9, 16}; vi = 2 otherwise.
(These are left-shift values for 28-bit circular rotations below.)

2. T ← PC1(K); represent T as 28-bit halves (C0, D0). (Use PC1 in Table 7.4 to select
bits fromK: C0 = k57k49 . . . k36,D0 = k63k55 . . . k4.)

3. For i from 1 to 16, computeKi as follows: Ci ← (Ci−1 ←↩ vi), Di ← (Di−1 ←↩
vi),Ki ← PC2(Ci, Di). (Use PC2 in Table 7.4 to select 48 bits from the concatena-
tion b1b2 . . . b56 of Ci andDi: Ki = b14b17 . . . b32. ‘←↩’ denotes left circular shift.)

If decryption is designed as a simple variation of the encryption function, savings result
in hardware or software code size. DES achieves this as outlined in Note 7.84.

7.84 Note (DES decryption) DES decryption consists of the encryption algorithm with the same
key but reversed key schedule, using in order K16,K15, . . . ,K1 (see Note 7.85). This
works as follows (refer to Figure 7.9). The effect of IP−1 is cancelled by IP in decryp-
tion, leaving (R16, L16); consider applying round 1 to this input. The operation on the left
half yields, rather than L0⊕f(R0,K1), now R16⊕f(L16,K16) which, since L16 = R15
and R16 = L15⊕f(R15,K16), is equal to L15⊕f(R15,K16)⊕f(R15,K16) = L15. Thus
round 1 decryption yields (R15, L15), i.e., inverting round 16. Note that the cancellation
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PC1
57 49 41 33 25 17 9

1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36

above for Ci; below forDi
63 55 47 39 31 23 15

7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

PC2
14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Table 7.4: DES key schedule bit selections (PC1 and PC2).

of each round is independent of the definition of f and the specific value ofKi; the swap-
ping of halves combined with the XOR process is inverted by the second application. The
remaining 15 rounds are likewise cancelled one by one in reverse order of application, due
to the reversed key schedule.

7.85 Note (DES decryption key schedule) Subkeys K1, . . . ,K16 may be generated by Algo-
rithm 7.83 and used in reverse order, or generated in reverse order directly as follows. Note
that afterK16 is generated, the original values of the 28-bit registers C andD are restored
(each has rotated 28 bits). Consequently, and due to the choice of shift-values, modifying
Algorithm 7.83 as follows generates subkeys in orderK16, . . . ,K1: replace the left-shifts
by right-shift rotates; change the shift value v1 to 0.

7.86 Example (DES test vectors) The plaintext “Now is the time for all ”, represented as a
string of 8-bit hex characters (7-bit ASCII characters plus leading 0-bit), and encrypted us-
ing the DES key specified by the hex string K = 0123456789ABCDEF results in the
following plaintext/ciphertext:
P = 4E6F772069732074 68652074696D6520 666F7220616C6C20

C = 3FA40E8A984D4815 6A271787AB8883F9 893D51EC4B563B53. �

7.4.3 DES properties and strength

There are many desirable characteristics for block ciphers. These include: each bit of the
ciphertext should depend on all bits of the key and all bits of the plaintext; there should be no
statistical relationship evident between plaintext and ciphertext; altering any single plain-
text or key bit should alter each ciphertext bit with probability 12 ; and altering a ciphertext
bit should result in an unpredictable change to the recovered plaintext block. Empirically,
DES satisfies these basic objectives. Some known properties and anomalies of DES are
given below.

(i) Complementation property

7.87 Fact Let E denote DES, and x the bitwise complement of x. Then y = EK(x) implies
y = EK(x). That is, bitwise complementing both the keyK and the plaintext x results in
complemented DES ciphertext.

Justification: Compare the first round output (see Figure 7.10) to (L0, R0) for the uncom-
plemented case. The combined effect of the plaintext and key being complemented results
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in the inputs to the XOR preceding the S-boxes (the expanded Ri−1 and subkeyKi) both
being complemented; this double complementation cancels out in the XOR operation, re-
sulting in S-box inputs, and thus an overall result f(R0,K1), as before. This quantity is
then XORed (Figure 7.9) to L0 (previouslyL0), resulting in L1 (rather than L1). The same
effect follows in the remaining rounds.

The complementation property is normally of no help to a cryptanalyst in known-plain-
text exhaustive key search. If an adversary has, for a fixed unknown key K, a chosen-
plaintext set of (x, y) data (P1, C1), (P1, C2), then C2 = EK(P1) implies C2 = EK(P1).
Checking if the key K with plaintext P1 yields either C1 or C2 now rules out two keys
with one encryption operation, thus reducing the expected number of keys required before
success from 255 to 254. This is not a practical concern.

(ii) Weak keys, semi-weak keys, and fixed points

If subkeys K1 to K16 are equal, then the reversed and original schedules create identical
subkeys: K1 = K16, K2 = K15, and so on. Consequently, the encryption and decryption
functions coincide. These are called weak keys (and also: palindromic keys).

7.88 Definition A DES weak key is a keyK such thatEK(EK(x)) = x for all x, i.e., defining
an involution. A pair of DES semi-weak keys is a pair (K1,K2) with EK1(EK2(x)) = x.

Encryption with one key of a semi-weak pair operates as does decryption with the other.

7.89 Fact DES has four weak keys and six pairs of semi-weak keys.

The four DES weak keys are listed in Table 7.5, along with corresponding 28-bit vari-
ables C0 and D0 of Algorithm 7.83; here {0}j represents j repetitions of bit 0. Since C0
andD0 are all-zero or all-one bit vectors, and rotation of these has no effect, it follows that
all subkeysKi are equal and an involution results as noted above.

The six pairs of DES semi-weak keys are listed in Table 7.6. Note their defining prop-
erty (Definition 7.88) occurs when subkeysK1 throughK16 of the first key, respectively,
equal subkeysK16 throughK1 of the second. This requires that a 1-bit circular left-shift of
each of C0 andD0 for the first 56-bit key results in the (C0, D0) pair for the second 56-bit
key (see Note 7.84), and thereafter left-rotating Ci and Di one or two bits for the first re-
sults in the same value as right-rotating those for the second the same number of positions.
The values in Table 7.6 satisfy these conditions. Given any one 64-bit semi-weak key, its
paired semi-weak key may be obtained by splitting it into two halves and rotating each half
through 8 bits.

7.90 Fact LetE denote DES. For each of the four DES weak keysK, there exist 232 fixed points
ofEK , i.e., plaintextsx such thatEK(x) = x. Similarly, four of the twelve semi-weak keys
K each have 232 anti-fixed points, i.e., x such that EK(x) = x.

The four semi-weak keys of Fact 7.90 are in the upper portion of Table 7.6. These are
called anti-palindromic keys, since for theseK1 = K16,K2 = K15, and so on.

(iii) DES is not a group

For a fixed DES key K, DES defines a permutation from {0, 1}64 to {0, 1}64. The set of
DES keys defines 256 such (potentially different) permutations. If this set of permutations
was closed under composition (i.e., given any two keysK1,K2, there exists a third keyK3
such thatEK3(x) = EK2(EK1(x)) for all x) then multiple encryption would be equivalent
to single encryption. Fact 7.91 states that this is not the case for DES.
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weak key (hexadecimal) C0 D0

0101 0101 0101 0101 {0}28 {0}28

FEFE FEFE FEFE FEFE {1}28 {1}28

1F1F 1F1F 0E0E 0E0E {0}28 {1}28

E0E0 E0E0 F1F1 F1F1 {1}28 {0}28

Table 7.5: Four DES weak keys.

C0 D0 semi-weak key pair (hexadecimal) C0 D0

{01}14 {01}14 01FE 01FE 01FE 01FE, FE01 FE01 FE01 FE01 {10}14 {10}14

{01}14 {10}14 1FE0 1FE0 0EF1 0EF1, E01F E01F F10E F10E {10}14 {01}14

{01}14 {0}28 01E0 01E0 01F1 01F1, E001 E001 F101 F101 {10}14 {0}28

{01}14 {1}28 1FFE 1FFE 0EFE 0EFE, FE1F FE1F FE0E FE0E {10}14 {1}28

{0}28 {01}14 011F 011F 010E 010E, 1F01 1F01 0E01 0E01 {0}28 {10}14

{1}28 {01}14 E0FE E0FE F1FE F1FE, FEE0 FEE0 FEF1 FEF1 {1}28 {10}14

Table 7.6: Six pairs of DES semi-weak keys (one pair per line).

7.91 Fact The set of 256 permutations defined by the 256 DES keys is not closed under func-
tional composition. Moreover, a lower bound on the size of the group generated by com-
posing this set of permutations is 102499.

The lower bound in Fact 7.91 is important with respect to using DES for multiple en-
cryption. If the group generated by functional composition was too small, then multiple
encryption would be less secure than otherwise believed.

(iv) Linear and differential cryptanalysis of DES

Assuming that obtaining enormous numbers of known-plaintext pairs is feasible, linear
cryptanalysis provides the most powerful attack on DES to date; it is not, however, con-
sidered a threat to DES in practical environments. Linear cryptanalysis is also possible in a
ciphertext-only environment if some underlying plaintext redundancy is known (e.g., parity
bits or high-order 0-bits in ASCII characters).

Differential cryptanalysis is one of the most general cryptanalytic tools to date against
modern iterated block ciphers, including DES, Lucifer, and FEAL among many others. It is,
however, primarily a chosen-plaintext attack. Further information on linear and differential
cryptanalysis is given in §7.8.

7.92 Note (strength of DES) The complexity (see §7.2.1) of the best attacks currently known
against DES is given in Table 7.7; percentages indicate success rate for specified attack pa-
rameters. The ‘processing complexity’ column provides only an estimate of the expected
cost (operation costs differ across the various attacks); for exhaustive search, the cost is in
DES operations. Regarding storage complexity, both linear and differential cryptanalysis
require only negligible storage in the sense that known or chosen texts can be processed
individually and discarded, but in a practical attack, storage for accumulated texts would
be required if ciphertext was acquired prior to commencing the attack.
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attack method data complexity storage processing

known chosen complexity complexity

exhaustive precomputation — 1 256 1 (table lookup)

exhaustive search 1 — negligible 255

linear cryptanalysis 243 (85%) — for texts 243

238 (10%) — for texts 250

differential cryptanalysis — 247 for texts 247

255 — for texts 255

Table 7.7: DES strength against various attacks.

7.93 Remark (practicality of attack models) To be meaningful, attack comparisons based on
different models (e.g., Table 7.7) must appropriately weigh the feasibility of extracting (ac-
quiring) enormous amounts of chosen (known) plaintexts, which is considerably more dif-
ficult to arrange than a comparable number of computing cycles on an adversary’s own ma-
chine. Exhaustive search with one known plaintext-ciphertext pair (for ciphertext-only, see
Example 7.28) and 255 DES operations is significantly more feasible in practice (e.g., using
highly parallelized custom hardware) than linear cryptanalysis (LC) requiring 243 known
pairs.

While exhaustive search, linear, and differential cryptanalysis allow recovery of a DES
key and, therefore, the entire plaintext, the attacks of Note 7.8, which become feasible once
about 232 ciphertexts are available, may be more efficient if the goal is to recover only part
of the text.

7.5 FEAL

The Fast Data Encipherment Algorithm (FEAL) is a family of algorithms which has played
a critical role in the development and refinement of various advanced cryptanalytic tech-
niques, including linear and differential cryptanalysis. FEAL-N maps 64-bit plaintext to
64-bit ciphertext blocks under a 64-bit secret key. It is anN -round Feistel cipher similar to
DES (cf. Equations (7.4), (7.5)), but with a far simpler f -function, and augmented by initial
and final stages which XOR the two data halves as well as XOR subkeys directly onto the
data halves.

FEAL was designed for speed and simplicity, especially for software on 8-bit micro-
processors (e.g., chipcards). It uses byte-oriented operations (8-bit addition mod 256, 2-bit
left rotation, and XOR), avoids bit-permutations and table look-ups, and offers small code
size. The initial commercially proposed version with 4 rounds (FEAL-4), positioned as a
fast alternative to DES, was found to be considerably less secure than expected (see Ta-
ble 7.10). FEAL-8 was similarly found to offer less security than planned. FEAL-16 or
FEAL-32 may yet offer security comparable to DES, but throughput decreases as the num-
ber of rounds rises. Moreover, whereas the speed of DES implementations can be improved
through very large lookup tables, this appears more difficult for FEAL.

Algorithm 7.94 specifies FEAL-8. The f -function f(A, Y )maps an input pair of 32×
16 bits to a 32-bit output. Within the f function, two byte-oriented data substitutions (S-
boxes) S0 and S1 are each used twice; each maps a pair of 8-bit inputs to an 8-bit output
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row column number
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

S1
[0] 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
[1] 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
[2] 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
[3] 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2
[0] 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
[1] 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
[2] 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
[3] 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3
[0] 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
[1] 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
[2] 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
[3] 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4
[0] 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
[1] 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
[2] 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
[3] 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5
[0] 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
[1] 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
[2] 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
[3] 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6
[0] 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
[1] 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
[2] 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
[3] 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7
[0] 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
[1] 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
[2] 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
[3] 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8
[0] 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
[1] 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
[2] 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
[3] 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Table 7.8: DES S-boxes.
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(see Table 7.9). S0 and S1 add a single bit d ∈ {0, 1} to 8-bit arguments x and y, ignore
the carry out of the top bit, and left rotate the result 2 bits (ROT2):

Sd(x, y) = ROT2(x+ y + d mod 256) (7.6)

The key schedule uses a function fK(A,B) similar to the f -function (see Table 7.9; Ai,
Bi, Yi, ti, and Ui are 8-bit variables), mapping two 32-bit inputs to a 32-bit output.

U ← f(A,Y ) U ← fK(A,B)

t1 = (A0⊕A1)⊕Y0 A0⊕A1
t2 = (A2⊕A3)⊕Y1 A2⊕A3
U1 = S1(t1, t2) S1(t1, t2⊕B0)
U2 = S0(t2, U1) S0(t2, U1⊕B1)
U0 = S0(A0, U1) S0(A0, U1⊕B2)
U3 = S1(A3, U2) S1(A3, U2⊕B3)

Table 7.9: Output U = (U0, U1, U2, U3) for FEAL functions f , fK (Algorithm 7.94).

As the operations of 2-bit rotation and XOR are both linear, the only nonlinear elemen-
tary operation in FEAL is addition mod 256.

7.94 Algorithm Fast Data Encipherment Algorithm (FEAL-8)

INPUT: 64-bit plaintextM = m1 . . .m64; 64-bit keyK = k1 . . . k64.
OUTPUT: 64-bit ciphertext block C = c1 . . . c64. (For decryption, see Note 7.96.)

1. (key schedule) Compute sixteen 16-bit subkeysKi fromK using Algorithm 7.95.
2. DefineML = m1 · · ·m32,MR = m33 · · ·m64.
3. (L0, R0)← (ML,MR) ⊕ ((K8,K9), (K10,K11)). (XOR initial subkeys.)
4. R0 ← R0⊕L0.
5. For i from 1 to 8 do: Li ← Ri−1, Ri ← Li−1⊕f(Ri−1,Ki−1). (Use Table 7.9 for
f(A, Y ) with A = Ri−1 = (A0, A1, A2, A3) and Y = Ki−1 = (Y0, Y1).)

6. L8 ← L8⊕R8.
7. (R8, L8)← (R8, L8) ⊕ ((K12,K13), (K14,K15)). (XOR final subkeys.)
8. C ← (R8, L8). (Note the order of the final blocks is exchanged.)

7.95 Algorithm FEAL-8 key schedule

INPUT: 64-bit keyK = k1 . . . k64.
OUTPUT: 256-bit extended key (16-bit subkeysKi, 0 ≤ i ≤ 15).

1. (initialize) U (−2) ← 0, U (−1) ← k1 . . . k32, U (0) ← k33 . . . k64.

2. U
def
= (U0, U1, U2, U3) for 8-bit Ui. ComputeK0, . . . ,K15 as i runs from 1 to 8:

(a) U ← fK(U (i−2), U (i−1)⊕U (i−3)). (fK is defined in Table 7.9, where A and
B denote 4-byte vectors (A0, A1, A2, A3), (B0, B1, B2, B3).)

(b) K2i−2 = (U0, U1), K2i−1 = (U2, U3), U (i) ← U .

7.96 Note (FEAL decryption) Decryption may be achieved using Algorithm 7.94 with the same
key K and ciphertext C = (R8, L8) as the plaintext inputM , but with the key schedule
reversed. More specifically, subkeys ((K12,K13), (K14,K15)) are used for the initial XOR
(step 3), ((K8,K9), (K10,K11)) for the final XOR (step 7), and the round keys are used
fromK7 back toK0 (step 5). This is directly analogous to decryption for DES (Note 7.84).
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7.97 Note (FEAL-N) FEAL with 64-bit key can be generalized toN -rounds,N even. N = 2x

is recommended; x = 3 yields FEAL-8 (Algorithm 7.94). FEAL-N usesN +8 sixteen-bit
subkeys: K0, . . . ,KN−1, respectively, in round i; KN , . . . ,KN+3 for the initial XOR;
and KN+4, . . .KN+7 for the final XOR. The key schedule of Algorithm 7.95 is directly
generalized to compute keysK0 throughKN+7 as i runs from 1 to (N/2) + 4.

7.98 Note (FEAL-NX) Extending FEAL-N to use a 128-bit key results in FEAL-NX, with al-
tered key schedule as follows. The key is split into 64-bit halves (KL,KR). KR is parti-
tioned into 32-bit halves (KR1,KR2). For 1 ≤ i ≤ (N/2) + 4, define Qi = KR1⊕KR2
for i ≡ 1 mod 3; Qi = KR1 for i ≡ 2 mod 3; and Qi = KR2 for i ≡ 0 mod 3.
The second argument (U (i−1)⊕U (i−3)) to fK in step 2a of Algorithm 7.95 is replaced by
U (i−1)⊕U (i−3)⊕Qi. For KR = 0, FEAL-NX matches FEAL-N with KL as the 64-bit
FEAL-N keyK.

7.99 Example (FEAL test vectors) For hex plaintextM = 00000000 00000000 and hex
key K = 01234567 89ABCDEF, Algorithm 7.95 generates subkeys (K0, . . . ,K7) =
DF3BCA36 F17C1AEC 45A5B9C7 26EBAD25, (K8, . . . ,K15) = 8B2AECB7
AC509D4C 22CD479B A8D50CB5. Algorithm 7.94 generates FEAL-8 ciphertext C =
CEEF2C86 F2490752. For FEAL-16, the corresponding ciphertext is C′ = 3ADE0D2A
D84D0B6F; for FEAL-32, C′′ = 69B0FAE6 DDED6B0B. For 128-bit key (KL,KR)
with KL = KR = K as above, M has corresponding FEAL-8X ciphertext C′′′ =
92BEB65D 0E9382FB. �

7.100 Note (strength of FEAL) Table 7.10 gives various published attacks on FEAL; LC and DC
denote linear and differential cryptanalysis, and times are on common personal computers
or workstations.

attack data complexity storage processing

method known chosen complexity complexity

FEAL-4 – LC 5 — 30K bytes 6 minutes

FEAL-6 – LC 100 — 100K bytes 40 minutes

FEAL-8 – LC 224 10 minutes

FEAL-8 – DC 27 pairs 280K bytes 2 minutes

FEAL-16 – DC — 229 pairs 230 operations

FEAL-24 – DC — 245 pairs 246 operations

FEAL-32 – DC — 266 pairs 267 operations

Table 7.10: FEAL strength against various attacks.
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7.6 IDEA

The cipher named IDEA (International Data Encryption Algorithm) encrypts 64-bit plain-
text to 64-bit ciphertext blocks, using a 128-bit input key K. Based in part on a novel
generalization of the Feistel structure, it consists of 8 computationally identical rounds fol-
lowed by an output transformation (see Figure 7.11). Round r uses six 16-bit subkeysK(r)i ,
1 ≤ i ≤ 6, to transform a 64-bit inputX into an output of four 16-bit blocks, which are in-
put to the next round. The round 8 output enters the output transformation, employing four
additional subkeys K(9)i , 1 ≤ i ≤ 4 to produce the final ciphertext Y = (Y1, Y2, Y3, Y4).
All subkeys are derived fromK.

A dominant design concept in IDEA is mixing operations from three different alge-
braic groups of 2n elements. The corresponding group operations on sub-blocks a and b of
bitlength n = 16 are bitwise XOR: a⊕b; addition mod 2n: (a+b)AND 0xFFFF, denoted
a�b; and (modified) multiplication mod 2n+1, with 0 ∈ Z2n associated with 2n ∈ Z2n+1:
a�b (see Note 7.104).

bitwise XOR

addition mod 216

multiplication mod 216 + 1 (with 0 interpreted as 216)

16

K
(1)
5

X1 X2

K
(1)
3K

(1)
2

round 1

output
transformation

16 16 16

K
(1)
4

16 16 16

Y1 Y2 Y3 Y4

16

X3 X4

K
(9)
2 K

(9)
3 K

(9)
4

(2 ≤ r ≤ 8)
round r

K
(1)
6

MA-box t2

t0

t1

16161616
K
(1)
1

K
(9)
1

ciphertext (Y1, Y2, Y3, Y4)

subkeysK(r)i for round r

plaintext (X1, X2, X3, X4)

Figure 7.11: IDEA computation path.
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7.101 Algorithm IDEA encryption

INPUT: 64-bit plaintextM = m1 . . .m64; 128-bit keyK = k1 . . . k128.
OUTPUT: 64-bit ciphertext block Y = (Y1, Y2, Y3, Y4). (For decryption, see Note 7.103.)

1. (key schedule) Compute 16-bit subkeysK(r)1 , . . . ,K
(r)
6 for rounds 1 ≤ r ≤ 8, and

K
(9)
1 , . . . ,K

(9)
4 for the output transformation, using Algorithm 7.102.

2. (X1, X2, X3, X4)← (m1 . . .m16,m17 . . .m32,m33 . . .m48,m49 . . .m64),
whereXi is a 16-bit data store.

3. For round r from 1 to 8 do:

(a) X1 ← X1�K
(r)
1 ,X4 ← X4�K

(r)
4 , X2 ← X2 �K(r)2 , X3 ← X3 �K(r)3 .

(b) t0 ← K
(r)
5 �(X1⊕X3), t1 ← K

(r)
6 �(t0 � (X2⊕X4)), t2 ← t0 � t1.

(c) X1 ← X1⊕t1,X4 ← X4⊕t2, a← X2⊕t2,X2 ← X3⊕t1, X3 ← a.

4. (output transformation) Y1 ← X1�K
(9)
1 , Y4 ← X4�K

(9)
4 , Y2 ← X3�K(9)2 , Y3 ←

X2 �K(9)3 .

7.102 Algorithm IDEA key schedule (encryption)

INPUT: 128-bit keyK = k1 . . . k128.
OUTPUT: 52 16-bit key sub-blocksK(r)i for 8 rounds r and the output transformation.

1. Order the subkeysK(1)1 . . .K
(1)
6 ,K

(2)
1 . . .K

(2)
6 , . . . ,K

(8)
1 . . .K

(8)
6 ,K

(9)
1 . . .K

(9)
4 .

2. PartitionK into eight 16-bit blocks; assign these directly to the first 8 subkeys.
3. Do the following until all 52 subkeys are assigned: cyclic shiftK left 25 bits; parti-

tion the result into 8 blocks; assign these blocks to the next 8 subkeys.

The key schedule of Algorithm 7.102 may be converted into a table which lists, for
each of the 52 keys blocks, which 16 (consecutive) bits of the input keyK form it.

7.103 Note (IDEA decryption) Decryption is achieved using Algorithm 7.101 with the cipher-
text Y provided as input M , and the same encryption key K, but the following change
to the key schedule. First use K to derive all encryption subkeys K(r)i ; from these com-

pute the decryption subkeysK ′(r)i per Table 7.11; then useK ′(r)i in place ofK(r)i in Algo-
rithm 7.101. In Table 7.11,−Ki denotes the additive inverse (mod 216) ofKi: the integer
u = (216−Ki) AND 0xFFFF, 0 ≤ u ≤ 216− 1. K−1i denotes the multiplicative inverse
(mod 216 + 1) ofKi, also in {0, 1, . . . , 216 − 1}, derivable by the Extended Euclidean al-
gorithm (Algorithm 2.107), which on inputs a ≥ b ≥ 0 returns integers x and y such that
ax + by = gcd(a, b). Using a = 216 + 1 and b = Ki, the gcd is always 1 (except for
Ki = 0, addressed separately) and thusK−1i = y, or 216 + 1+ y if y < 0. WhenKi = 0,
this input is mapped to 216 (since the inverse is defined byKi�K

−1
i = 1; see Note 7.104)

and (216)−1 = 216 is then defined to giveK−1i = 0.

7.104 Note (definition of �) In IDEA, a�b corresponds to a (modified) multiplication, modulo
216+1, of unsigned 16-bit integers a and b, where 0 ∈ Z216 is associated with 216 ∈ Z∗216+1
as follows:2 if a = 0 or b = 0, replace it by 216 (which is ≡ −1 mod 216 + 1) prior to
modular multiplication; and if the result is 216, replace this by 0. Thus, � maps two 16-
bit inputs to a 16-bit output. Pseudo-code for � is as follows (cf. Note 7.105, for ordinary

2Thus the operands of � are from a set of cardinality 216 (Z∗
216+1

) as are those of⊕ and �.
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round r K ′
(r)
1 K ′

(r)
2 K ′

(r)
3 K ′

(r)
4 K ′

(r)
5 K ′

(r)
6

r = 1 (K
(10−r)
1 )−1 −K(10−r)2 −K(10−r)3 (K

(10−r)
4 )−1 K

(9−r)
5 K

(9−r)
6

2 ≤ r ≤ 8 (K
(10−r)
1 )−1 −K(10−r)3 −K(10−r)2 (K

(10−r)
4 )−1 K

(9−r)
5 K

(9−r)
6

r = 9 (K
(10−r)
1 )−1 −K(10−r)2 −K(10−r)3 (K

(10−r)
4 )−1 — —

Table 7.11: IDEA decryption subkeys K′(r)i derived from encryption subkeys K(r)i .

multiplication mod 216 + 1), for c a 32-bit unsigned integer: if (a = 0) r ← (0x10001
− b) (since 216b ≡ −b), elseif (b = 0) r ← (0x10001 − a) (by similar reasoning), else
{c← ab; r← ((c AND 0xFFFF) − (c >> 16)); if (r < 0) r ← (0x10001 + r)}, with
return value (r AND 0xFFFF) in all 3 cases.

7.105 Note (implementing ab mod 2n+1) Multiplication mod 216+1may be efficiently imple-
mented as follows, for 0 ≤ a, b ≤ 216 (cf. §14.3.4). Let c = ab = c0 · 232+ cH · 216+ cL,
where c0 ∈ {0, 1} and 0 ≤ cL, cH < 216. To compute c′ = c mod (216 + 1), first obtain
cL and cH by standard multiplication. For a = b = 216, note that c0 = 1, cL = cH = 0,
and c′ = (−1)(−1) = 1, since 216 ≡ −1mod (216+1); otherwise, c0 = 0. Consequently,
c′ = cL − cH + c0 if cL ≥ cH , while c′ = cL − cH + (216 + 1) if cL < cH (since then
−216 < cL − cH < 0).

7.106 Example (IDEA test vectors) Sample data for IDEA encryption of 64-bit plaintextM us-
ing 128-bit keyK is given in Table 7.12. All entries are 16-bit values displayed in hexadeci-
mal. Table 7.13 details the corresponding decryption of the resulting 64-bit ciphertext C
under the same keyK. �

128-bit keyK = (1, 2, 3, 4, 5, 6, 7, 8) 64-bit plaintextM = (0, 1, 2, 3)

r K
(r)
1 K

(r)
2 K

(r)
3 K

(r)
4 K

(r)
5 K

(r)
6 X1 X2 X3 X4

1 0001 0002 0003 0004 0005 0006 00f0 00f5 010a 0105
2 0007 0008 0400 0600 0800 0a00 222f 21b5 f45e e959
3 0c00 0e00 1000 0200 0010 0014 0f86 39be 8ee8 1173
4 0018 001c 0020 0004 0008 000c 57df ac58 c65b ba4d
5 2800 3000 3800 4000 0800 1000 8e81 ba9c f77f 3a4a
6 1800 2000 0070 0080 0010 0020 6942 9409 e21b 1c64
7 0030 0040 0050 0060 0000 2000 99d0 c7f6 5331 620e
8 4000 6000 8000 a000 c000 e001 0a24 0098 ec6b 4925
9 0080 00c0 0100 0140 — — 11fb ed2b 0198 6de5

Table 7.12: IDEA encryption sample: round subkeys and ciphertext (X1,X2,X3,X4).

7.107 Note (security of IDEA) For the full 8-round IDEA, other than attacks on weak keys (see
page 279), no published attack is better than exhaustive search on the 128-bit key space.
The security of IDEA currently appears bounded only by the weaknesses arising from the
relatively small (compared to its keylength) blocklength of 64 bits.
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K = (1, 2, 3, 4, 5, 6, 7, 8) C = (11fb,ed2b,0198,6de5)

r K′
(r)
1 K′

(r)
2 K′

(r)
3 K′

(r)
4 K′

(r)
5 K′

(r)
6 X1 X2 X3 X4

1 fe01 ff40 ff00 659a c000 e001 d98d d331 27f6 82b8
2 fffd 8000 a000 cccc 0000 2000 bc4d e26b 9449 a576
3 a556 ffb0 ffc0 52ab 0010 0020 0aa4 f7ef da9c 24e3
4 554b ff90 e000 fe01 0800 1000 ca46 fe5b dc58 116d
5 332d c800 d000 fffd 0008 000c 748f 8f08 39da 45cc
6 4aab ffe0 ffe4 c001 0010 0014 3266 045e 2fb5 b02e
7 aa96 f000 f200 ff81 0800 0a00 0690 050a 00fd 1dfa
8 4925 fc00 fff8 552b 0005 0006 0000 0005 0003 000c
9 0001 fffe fffd c001 — — 0000 0001 0002 0003

Table 7.13: IDEA decryption sample: round subkeys and variables (X1,X2,X3,X4).

7.7 SAFER, RC5, and other block ciphers

7.7.1 SAFER

SAFER K-64 (Secure And Fast Encryption Routine, with 64-bit key) is an iterated block
cipher with 64-bit plaintext and ciphertext blocks. It consists of r identical rounds followed
by an output transformation. The original recommendation of 6 rounds was followed by a
recommendation to adopt a slightly modified key schedule (yielding SAFER SK-64, which
should be used rather than SAFER K-64 – see Note 7.110) and to use 8 rounds (maximum
r = 10). Both key schedules expand the 64-bit external key into 2r+1 subkeys each of 64-
bits (two for each round plus one for the output transformation). SAFER consists entirely
of simple byte operations, aside from byte-rotations in the key schedule; it is thus suitable
for processors with small word size such as chipcards (cf. FEAL).

Details of SAFER K-64 are given in Algorithm 7.108 and Figure 7.12 (see also page
280 regarding SAFER K-128 and SAFER SK-128). The XOR-addition stage beginning
each round (identical to the output transformation) XORs bytes 1, 4, 5, and 8 of the (first)
round subkey with the respective round input bytes, and respectively adds (mod 256) the re-
maining 4 subkey bytes to the others. The XOR and addition (mod 256) operations are inter-
changed in the subsequent addition-XOR stage. The S-boxes are an invertible byte-to-byte
substitution using one fixed 8-bit bijection (see Note 7.111). A linear transformation f (the
Pseudo-Hadamard Transform) used in the 3-level linear layer was specially constructed for
rapid diffusion. The introduction of additive key biases in the key schedule eliminates weak
keys (cf. DES, IDEA). In contrast to Feistel-like and many other ciphers, in SAFER the op-
erations used for encryption differ from those for decryption (see Note 7.113). SAFER may
be viewed as an SP network (Definition 7.79).

Algorithm 7.108 uses the following definitions (L, R denote left, right 8-bit inputs):

1. f(L,R) = (2L+R, L+R). Addition here is mod 256 (also denoted by �);
2. tables S and Sinv, and the constant table for key biases Bi[j] as per Note 7.111.
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f f f f

f f f f

f f f f

Y1 Y2 Y3 Y4

transformation
output

(2 ≤ i ≤ r)
round i

Y5 Y6 Y8Y7

round 1

X1 X2 X3 X4 X6 X7 X8

8

8

64-bit plaintext

64-bit ciphertext
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S S−1 S S S−1 S−1 S

K2i−1[1,...,8]
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bitwise XOR
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K1[1,...,8]

K2[1,...,8]

S−1

Figure 7.12: SAFER K-64 computation path (r rounds).
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7.108 Algorithm SAFER K-64 encryption (r rounds)

INPUT: r, 6 ≤ r ≤ 10; 64-bit plaintextM = m1 · · ·m64 and keyK = k1 · · · k64.
OUTPUT: 64-bit ciphertext block Y = (Y1, . . . , Y8). (For decryption, see Note 7.113.)

1. Compute 64-bit subkeysK1, . . . ,K2r+1 by Algorithm 7.109 with inputsK and r.
2. (X1, X2, . . . , X8)← (m1 · · ·m8, m9 · · ·m16, . . . , m57 · · ·m64).
3. For i from 1 to r do: (XOR-addition, S-box, addition-XOR, and 3 linear layers)

(a) For j = 1, 4, 5, 8: Xj ← Xj ⊕ K2i−1[j].
For j = 2, 3, 6, 7: Xj ← Xj �K2i−1[j].

(b) For j = 1, 4, 5, 8: Xj ← S[Xj ]. For j = 2, 3, 6, 7: Xj ← Sinv[Xj].
(c) For j = 1, 4, 5, 8: Xj ← Xj �K2i[j]. For j = 2, 3, 6, 7: Xj ← Xj ⊕ K2i[j].
(d) For j = 1, 3, 5, 7: (Xj , Xj+1)← f(Xj , Xj+1).
(e) (Y1, Y2)← f(X1, X3), (Y3, Y4)← f(X5, X7),
(Y5, Y6)← f(X2, X4), (Y7, Y8)← f(X6, X8).
For j from 1 to 8 do: Xj ← Yj .

(f) (Y1, Y2)← f(X1, X3), (Y3, Y4)← f(X5, X7),
(Y5, Y6)← f(X2, X4), (Y7, Y8)← f(X6, X8).
For j from 1 to 8 do: Xj ← Yj . (This mimics the previous step.)

4. (output transformation):
For j = 1, 4, 5, 8: Yj ← Xj ⊕ K2r+1[j]. For j = 2, 3, 6, 7: Yj ← Xj �K2r+1[j].

7.109 Algorithm SAFER K-64 key schedule

INPUT: 64-bit keyK = k1 · · · k64; number of rounds r.
OUTPUT: 64-bit subkeysK1, . . . ,K2r+1. Ki[j] is byte j ofKi (numbered left to right).

1. Let R[i] denote an 8-bit data store and let Bi[j] denote byte j of Bi (Note 7.111).
2. (R[1], R[2], . . . , R[8])← (k1 · · ·k8, k9 · · · k16, . . . , k57 · · · k64).
3. (K1[1],K1[2], . . . ,K1[8])← (R[1], R[2], . . . , R[8]).
4. For i from 2 to 2r+ 1 do: (rotate key bytes left 3 bits, then add in the bias)

(a) For j from 1 to 8 do: R[j]← (R[j]←↩ 3).
(b) For j from 1 to 8 do: Ki[j]← R[j]�Bi[j]. (See Note 7.110.)

7.110 Note (SAFER SK-64 – strengthened key schedule) An improved key schedule for Algo-
rithm 7.108, resulting in SAFER SK-64, involves three changes as follows. (i) After ini-
tializing the R[i] in step 1 of Algorithm 7.109, set R[9] ← R[1]⊕R[2]⊕· · ·⊕R[8]. (ii)
Change the upper bound on the loop index in step 4a from 8 to 9. (iii) Replace the iterated
line in step 4b by: Ki[j]← R[((i+ j − 2) mod 9)+ 1]�Bi[j]. Thus, key bytes 1, . . . , 8
ofR[·] are used forK1; bytes 2, . . . , 9 forK2; bytes 3, . . . 9, 1 forK3, etc. Here and origi-
nally,� denotes addition mod 256. No attack against SAFER SK-64 better than exhaustive
key search is known.

7.111 Note (S-boxes and key biases in SAFER) The S-box, inverse S-box, and key biases for Al-
gorithm 7.108 are constant tables as follows. g ← 45. S[0] ← 1, Sinv[1] ← 0. for i from
1 to 255 do: t ← g · S[i − 1] mod 257, S[i] ← t, Sinv[t] ← i. Finally, S[128] ← 0,
Sinv[0]← 128. (Since g generates Z∗257, S[i] is a bijection on {0, 1, . . . , 255}. (Note that
g128 ≡ 256 (mod 257), and associating 256 with 0 makes S a mapping with 8-bit input
and output.) The additive key biases are 8-bit constants used in the key schedule (Algo-
rithm 7.109), intended to behave as random numbers, and definedBi[j] = S[S[9i+j]] for i
from 2 to 2r+1 and j from 1 to 8. For example: B2 = (22, 115, 59, 30, 142, 112, 189, 134)
and B13 = (143, 41, 221, 4, 128, 222, 231, 49).
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7.112 Remark (S-box mapping) The S-box of Note 7.111 is based on the function S(x) = gx

mod 257 using a primitive element g = 45 ∈ Z257. This mapping is nonlinear with respect
to both Z257 arithmetic and the vector space of 8-tuples over F2 under the XOR operation.
The inverse S-box is based on the base-g logarithm function.

7.113 Note (SAFER K-64 decryption) For decryption of Algorithm 7.108, the same key K and
subkeys Ki are used as for encryption. Each encryption step is undone in reverse order,
from last to first. Begin with an input transformation (XOR-subtraction stage) with key
K2r+1 to undo the output transformation, replacing modular addition with subtraction. Fol-
low with r decryption rounds using keysK2r throughK1 (two-per-round), inverting each
round in turn. Each starts with a 3-stage inverse linear layer using finv(L,R) = (L −
R, 2R − L), with subtraction here mod 256, in a 3-step sequence defined as follows (to
invert the byte-permutations between encryption stages):
Level 1 (for j = 1, 3, 5, 7): (Xj , Xj+1)← finv(Xj , Xj+1).
Levels 2 and 3 (each): (Y1, Y2)← finv(X1, X5), (Y3, Y4)← finv(X2, X6),
(Y5, Y6)← finv(X3, X7), (Y7, Y8)← finv(X4, X8); for j from 1 to 8 do: Xj ← Yj .
A subtraction-XOR stage follows (replace modular addition with subtraction), then an in-
verse substitution stage (exchange S and S−1), and an XOR-subtraction stage.

7.114 Example (SAFER test vectors) Using 6-round SAFER K-64 (Algorithm 7.108) on the 64-
bit plaintextM = (1, 2, 3, 4, 5, 6, 7, 8) with the key K = (8, 7, 6, 5, 4, 3, 2, 1) results in
the ciphertext C = (200, 242, 156, 221, 135, 120, 62, 217), written as 8 bytes in decimal.
Using 6-round SAFER SK-64 (Note 7.110) on the plaintextM above with the key K =
(1, 2, 3, 4, 5, 6, 7, 8) results in the ciphertext C = (95, 206, 155, 162, 5, 132, 56, 199). �

7.7.2 RC5

The RC5 block cipher has a word-oriented architecture for variable word sizesw = 16, 32,
or 64 bits. It has an extremely compact description, and is suitable for hardware or software.
The number of rounds r and the key byte-length b are also variable. It is successively more
completely identified as RC5–w, RC5–w/r, and RC5–w/r/b. RC5-32/12/16 is considered
a common choice of parameters; r = 12 rounds are recommended for RC5–32, and r = 16
for RC5–64.

Algorithm 7.115 specifies RC5. Plaintext and ciphertext are blocks of bitlength 2w.
Each of r rounds updates bothw-bit data halves, using 2 subkeys in an input transformation
and 2 more for each round. The only operations used, all on w-bit words, are addition mod
2w (�), XOR (⊕), and rotations (left←↩ and right ↪→). The XOR operation is linear, while
the addition may be considered nonlinear depending on the metric for linearity. The data-
dependent rotations featured in RC5 are the main nonlinear operation used: x←↩ y denotes
cyclically shifting a w-bit word left y bits; the rotation-count y may be reduced modw (the
low-order lg(w) bits of y suffice). The key schedule expands a key of b bytes into 2r + 2
subkeysKi of w bits each. Regarding packing/unpacking bytes into words, the byte-order
is little-endian: for w = 32, the first plaintext byte goes in the low-order end of A, the
fourth in A’s high-order end, the fifth in B’s low order end, and so on.
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7.115 Algorithm RC5 encryption (w-bit wordsize, r rounds, b-byte key)

INPUT: 2w-bit plaintextM = (A,B); r; keyK = K[0] . . .K[b− 1].
OUTPUT: 2w-bit ciphertext C. (For decryption, see Note 7.117.)

1. Compute 2r+ 2 subkeysK0, . . . ,K2r+1 by Algorithm 7.116 from inputsK and r.
2. A← A�K0, B ← B �K1. (Use addition modulo 2w.)
3. For i from 1 to r do: A← ((A⊕B)←↩ B)�K2i, B ← ((B⊕A)←↩ A)�K2i+1.
4. The output is C ← (A,B).

7.116 Algorithm RC5 key schedule

INPUT: word bitsize w; number of rounds r; b-byte keyK[0] . . .K[b− 1].
OUTPUT: subkeysK0, . . . ,K2r+1 (whereKi is w bits).

1. Let u = w/8 (number of bytes per word) and c = db/ue (number of wordsK fills).
Pad K on the right with zero-bytes if necessary to achieve a byte-count divisible by
u (i.e.,K[j]← 0 for b ≤ j ≤ c · u− 1). For i from 0 to c− 1 do: Li ←

∑u−1
j=0 2

8j

K[i · u+ j] (i.e., fill Li low-order to high-order byte using each byte ofK[·] once).
2. K0 ← Pw; for i from 1 to 2r + 1 do: Ki ← Ki−1 �Qw. (Use Table 7.14.)
3. i← 0, j ← 0, A← 0, B ← 0, t← max(c, 2r+ 2). For s from 1 to 3t do:

(a) Ki ← (Ki �A�B)←↩ 3, A← Ki, i← i+ 1 mod (2r + 2).
(b) Lj ← (Lj �A�B)←↩ (A�B), B ← Lj , j ← j + 1 mod c.

4. The output isK0,K1, . . . ,K2r+1. (The Li are not used.)

7.117 Note (RC5 decryption) Decryption uses the Algorithm 7.115 subkeys, operating on ci-
phertext C = (A,B) as follows (subtraction is mod 2w, denoted �). For i from r down
to 1 do: B ← ((B � K2i+1) ↪→ A)⊕A, A ← ((A � K2i) ↪→ B)⊕B. Finally M ←
(A�K0, B �K1).

w : 16 32 64

Pw : B7E1 B7E15163 B7E15162 8AED2A6B
Qw : 9E37 9E3779B9 9E3779B9 7F4A7C15

Table 7.14: RC5 magic constants (given as hex strings).

7.118 Example (RC5–32/12/16 test vectors) For the hexadecimal plaintextM = 65C178B2
84D197CC and keyK = 5269F149 D41BA015 2497574D 7F153125, RC5 with
w = 32, r = 12, and b = 16 generates ciphertextC = EB44E415 DA319824. �

7.7.3 Other block ciphers

LOKI’91 (and earlier, LOKI’89) was proposed as a DES alternative with a larger 64-bit key,
a matching 64-bit blocksize, and 16 rounds. It differs from DES mainly in key-scheduling
and the f -function. The f -function of each round uses four identical 12-to-8 bit S-boxes,
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4 input bits of which select one of 16 functions, each of which implements exponentia-
tion with a fixed exponent in a different representation of GF(28). While no significant ex-
ploitable weaknesses have been found in LOKI’91 when used for encryption, related-key
attacks (see page 281) are viewed as a certificational weakness.

Khufu and Khafre are DES-like ciphers which were proposed as fast software-oriented
alternatives to DES. They have 64-bit blocks, 8 × 32 bit S-boxes, and a variable number
of rounds (typically 16, 24, or 32). Khufu keys may be up to 512 bits. Khafre keys have
bitlength that is a multiple of 64 (64 and 128-bit keys are typical); 64 key bits are XORed
onto the data block before the first and thereafter following every 8 rounds. Whereas a DES
round involves eight 6-to-4 bit S-boxes, one round of Khufu involves a single 8-to-32 bit
table look-up, with a different S-box for every 8 rounds. The S-boxes are generated pseu-
dorandomly from the user key. Khafre uses fixed S-boxes generated pseudorandomly from
an initial S-box constructed from random numbers published by the RAND corporation in
1955. Under the best currently known attacks, 16-round Khufu and 24-round Khafre are
each more difficult to break than DES.

7.8 Notes and further references
§7.1

The extensive and particularly readable survey by Diffie and Hellman [347], providing a
broad introduction to cryptography especially noteworthy for its treatment of Hagelin and
rotor machines and the valuable annotated bibliography circa 1979, is a source for much
of the material in §7.2, §7.3, and §7.4 herein. Aside from the appearance of DES [396] in
the mid 1970s and FEAL [884] later in the 1980s, prior to 1990 few fully-specified seri-
ous symmetric block cipher proposals were widely available or discussed. (See Chapter 15
for Pohlig and Hellman’s 1978 discrete exponentiation cipher.) With the increasing feasi-
bility of exhaustive search on 56-bit DES keys, the period 1990-1995 resulted in a large
number of proposals, beginning with PES [728], the preliminary version of IDEA [730].
The Fast Software Encryption workshops (Cambridge, U.K., Dec. 1993; Leuven, Belgium,
Dec. 1994; and again Cambridge, Feb. 1996) were a major stimulus and forum for new pro-
posals.

The most significant cryptanalytic advances over the 1990-1995period were Matsui’s linear
cryptanalysis [796, 795], and the differential cryptanalysis of Biham and Shamir [138] (see
also [134, 139]). Extensions of these included the differential-linear analysis by Langford
and Hellman [741], and the truncated differential analysis of Knudsen [686]. For additional
background on linear cryptanalysis, see Biham [132]; see also Matsui and Yamagishi [798]
for a preliminary version of the method. Additional background on differential cryptanal-
ysis is provided by many authors including Lai [726], Lai, Massey, and Murphy [730], and
Coppersmith [271]; although more efficient 6-round attacks are known, Stinson [1178] pro-
vides detailed examples of attacks on 3-round and 6-round DES. Regarding both linear and
differential cryptanalysis, see also Knudsen [684] and Kaliski and Yin [656].

§7.2
Lai [726, Chapter 2] provides an excellent concise introduction to block ciphers, including a
lucid discussion of design principles (recommendedfor all block cipher designers). Regard-
ing text dictionary and matching ciphertext attacks (Note 7.8), see Coppersmith, Johnson,
and Matyas [278]. Rivest and Sherman [1061] provide a unified framework for random-
ized encryption (Definition 7.3); a common example is the use of random “salt” appended
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to passwords prior to password encryption in some operating systems (§10.2.3). Fact 7.9 is
due to Shannon [1121], whose contributions are many (see below).

The four basic modes of operation (including k-bit OFB feedback) were originally defined
specifically for DES in 1980 by FIPS 81 [398] and in 1983 by ANSI X3.106 [34], while ISO
8732 [578] and ISO/IEC 10116 [604], respectively, defined these modes for general 64-bit
and generaln-bit block ciphers, mandatingn-bit OFB feedback (see also Chapter 15). Bras-
sard [192] gives a concise summary of modes of operation; Davies and Price [308] provide a
comprehensive discussion, including OFB cycling (Note 7.24; see also Jueneman [643] and
Davies and Parkin [307]), and a method for encrypting incomplete CBC final blocks with-
out data expansion, which is important if plaintext must be encrypted and returned into its
original store. See Voydock and Kent [1225] for additional requirements on IV s. Recom-
mending r = s for maximum strength, ISO/IEC 10116 [604] specifies the CFB variation of
Example 7.19, and provides extensive discussion of properties of the various modes. The
counter mode (Example 7.23) was suggested by Diffie and Hellman [347].

The 1977 exhaustive DES key search machine (Example 7.27) proposed by Diffie and Hell-
man [346] contained 106 DES chips, with estimated cost US$20 million (1977 technology)
and 12-hour expected search time; Diffie later revised the estimate upwards one order of
magnitude in a BNR Inc. report (US$50 million machine, 2-day expected search time, 1980
technology). Diffie and Hellman noted the feasibility of a ciphertext-only attack (Exam-
ple 7.28), and that attempting to preclude exhaustive search by changing DES keys more
frequently, at best, doubles the expected search time before success.

Subsequently Wiener [1241] provided a gate-level design for a US$1 million machine (1993
technology) using 57 600 DES chips with expected success in 3.5 hours. Each chip con-
tains 16 pipelined stages, each stage completing in one clock tick at 50 MHz; a chip with
full pipeline completes a key test every 20 nanoseconds, providing a machine 57 600× 50
times faster than the 1142 years noted in FIPS 74 [397] as the time required to check 255

keys if one key can be tested each microsecond. Comparable key search machines of equiv-
alent cost by Eberle [362] and Wayner [1231] are, respectively, 55 and 200 times slower,
although the former does not require a chip design, and the latter uses a general-purpose
machine. Wiener also noted adaptations of the ECB known-plaintext attack to other 64-bit
modes (CBC, OFB, CFB) and 1-bit and 8-bit CFB.

Even and Goldreich [376] discuss the unicity distance of cascade ciphers under known-
plaintext attack (Fact 7.35), present a generalized time-memory meet-in-the-middle trade-
off (Note 7.38), and give several other concise results on cascades, including that under
reasonable assumptions, the number of permutations realizable by a cascade of L random
cipher stages is, with high probability, 2Lk.

Diffie and Hellman [346] noted the meet-in-the-middle attack on double encryption (Fact
7.33), motivating their recommendation that multiple encipherment, if used, should be at
least three-fold; Hoffman [558] credits them with suggesting E-E-E triple encryption with
three independent keys. Merkle’s June 1979 thesis [850] explains the attack on two-key
triple-encryption of Fact 7.39 (see also Merkle and Hellman [858]), and after noting Tuch-
man’s proposal of two-key E-D-E triple encryption in a June 1978 conference talk (National
Computer Conference, Anaheim, CA; see also [1199]), recommended that E-D-E be used
with three independent keys: EK3(E

−1
K2(EK1(x))). The two-key E-D-E idea, adopted in

ANSI X9.17 [37] and ISO 8732 [578], was reportedly conceived circa April 1977 by Tuch-
man’s colleagues, Matyas and Meyer. The attack of Fact 7.40 is due to van Oorschot and
Wiener [1206]. See Coppersmith, Johnson, and Matyas [278] for a proposed construction
for a triple-DES algorithm. Other techniques intended to extend the strength of DES in-
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clude the DESX proposal of Rivest as analyzed by Kilian and Rogaway [672], and the work
of Biham and Biryukov [133].

Hellman [549] proposes a time-memory tradeoff for exhaustive key search on a cipher with
N = 2m ciphertexts requiring a chosen-plaintext attack,O(N2/3) time andO(N2/3) space
after an O(N) precomputation; search time can be reduced somewhat by use of Rivest’s
suggestion of distinguished points (see Denning [326, p.100]). Kusuda and Matsumoto
[722] recently extended this analysis. Fiat and Naor [393] pursue time-memory tradeoffs
for more general functions. Amirazizi and Hellman [25] note that time-memory tradeoff
with constant time-memory product offers no asymptotic cost advantage over exhaustive
search; they examine tradeoffs between time, memory, and parallel processing, and using
standard parallelization techniques, propose under a simplified model a search machine ar-
chitecture for which doubling the machine budget (cost) increases the solution rate four-
fold. This approach may be applied to exhaustive key search on double-encryption, as can
the parallel collision search technique of van Oorschot and Wiener [1207, 1208]; see also
Quisquater and Delescaille [1017, 1018].

Regarding Note 7.41, see Biham [131] (and earlier [130]) as well as Coppersmith, John-
son, and Matyas [278]. Biham’s analysis on DES and FEAL shows that, in many cases, the
use of intermediate data as feedback into an intermediate stage reduces security. 15 years
earlier, reflecting on his chosen-plaintext attack on two-key triple-encryption, Merkle [850,
p.149] noted “multiple encryption with any cryptographic system is liable to be much less
secure than a system designed originally for the longer key”.

Maurer and Massey [822] formalize Fact 7.42, where “break” means recovering plaintext
from ciphertext (under a known-plaintext attack) or recovering the key; the results hold also
for chosen-plaintext and chosen-ciphertext attack. They illustrate, however, that the ear-
lier result and commonly-held belief proven by Even and Goldreich [376] – that a cascade
is as strong as any of its component ciphers – requires the important qualifying (and non-
practical) assumption that an adversary will not exploit statistics of the underlying plaintext;
thus, the intuitive result is untrue for most practical ciphertext-only attacks.

§7.3
Kahn [648] is the definitive historical reference for classical ciphers and machines up to
1967, including much of §7.3 and the notes below. The selection of classical ciphers pre-
sented largely follows Shannon’s lucid 1949 paper [1121]. Standard references for classical
cryptanalysis include Friedman [423], Gaines [436], and Sinkov [1152]. More recent books
providing expository material on classical ciphers, machines, and cryptanalytic examples
include Beker and Piper [84], Meyer and Matyas [859], Denning [326], and Davies and
Price [308].

Polyalphabetic ciphers were invented circa 1467 by the Florentine architect Alberti, who
devised a cipher disk with a larger outer and smaller inner wheel, respectively indexed by
plaintext and ciphertext characters. Letter alignments defined a simple substitution, modi-
fied by rotating the disk after enciphering a few words. The first printed book on cryptogra-
phy, Polygraphia, written in 1508 by the German monk Trithemius and published in 1518,
contains the first tableau – a square table on 24 characters listing all shift substitutions for a
fixed ordering of plaintext alphabet characters. Tableau rows were used sequentially to sub-
stitute one plaintext character each for 24 letters, where-after the same tableau or one based
on a different alphabet ordering was used. In 1553 Belaso (from Lombardy) suggested us-
ing an easily changed key (and key-phrases as memory aids) to define the fixed alphabetic
(shift) substitutions in a polyalphabetic substitution. The 1563 book of Porta (from Naples)
noted the ordering of tableau letters may define arbitrary substitutions (vs. simply shifted
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alphabets).

Various polyalphabetic auto-key ciphers, wherein the key changes with each message (the
alteration depending on the message), were explored in the 16th century, most significantly
by the Frenchman B. de Vigenère. His 1586 book Traicté des Chiffres proposed the com-
bined use of a mixed tableau (mixed alphabet on both the tableau top and side) and an auto-
keying technique (cf. Example 7.61). A single character served as a priming key to select
the tableau row for the first character substitution, where-after the ith plaintext character
determined the alphabet (tableau row) for substituting the next. The far less secure simple
Vigenère cipher (Definition 7.53) is incorrectly attributed to Vigenère.

The Playfair cipher (Example 7.51), popularized by L. Playfair in England circa 1854 and
invented by the British scientist C. Wheatstone, was used as a British field cipher [648, p.6].
J. Mauborgne (see also the Vernam and PURPLE ciphers below) is credited in 1914 with
the first known solution of this digram cipher.

The Jefferson cylinder was designed by American statesman T. Jefferson, circa 1790-1800.
In 1817, fellow American D. Wadsworth introduced the principle of plaintext and cipher-
text alphabets of different lengths. His disk (cf. Alberti above) implemented a cipher similar
to Trithemius’ polyalphabetic substitution, but wherein the various alphabets were brought
into play irregularly in a plaintext-dependent manner, foreshadowing both the polyalpha-
betic ciphers of later 20th century rotor machines, and the concept of chaining. The inner
disk had 26 letters while the outer had an additional 7 digits; one full revolution of the larger
caused the smaller to advance 7 characters into its second revolution. The driving disk was
always turned in the same clockwise sense; when the character revealed through an aperture
in the plaintext disk matched the next plaintext character, that visible through a correspond-
ing ciphertext aperture indicated the resulting ciphertext. In 1867, Wheatstone displayed
an independently devised similar device thereafter called the Wheatstone disc, receiving
greater attention although less secure (having disks of respectively 26 and 27 characters,
the extra character a plaintext space).

Vernam [1222] recorded his idea for telegraph encryption in 1917; a patent filed in Septem-
ber 1918 was issued July 1919. Vernam’s device combined a stream of plaintext (5-bit Bau-
dot coded) characters, via XOR, with a keystream of 5-bit (key) values, resulting in the Ver-
nam cipher (a term often used for related techniques). This, the first polyalphabetic substi-
tution automated using electrical impulses, had period equal to the length of the key stream;
each 5-bit key value determined one of 32 fixed mono-alphabetic substitutions. Credit for
the actual one-time system goes to J. Mauborgne (U.S. Army) who, after seeing Vernam’s
device with a repeated tape, realized that use of a random, non-repeated key improved se-
curity. While Vernam’s device was a commercial failure, a related German system engi-
neered by W. Kunze, R. Schauffler, and E. Langlotz was put into practice circa 1921-1923
for German diplomatic communications; their encryption system, which involved manu-
ally adding a key string to decimal-coded plaintext, was secured by using as the numerical
key a random non-repeating decimal digit stream – the original one-time pad. Pads of 50
numbered sheets were used, each with 48 five-digit groups; no pads were repeated aside for
one identical pad for a communicating partner, and no sheet was to be used twice; sheets
were destroyed once used. The Vernam cipher proper, when used as a one-time system, in-
volves only 32 alphabets, but provides more security than rotor machines with a far greater
number of alphabets because the latter eventually repeat, whereas there is total randomness
(for each plaintext character) in selecting among the 32 Vernam alphabets.

The matrix cipher of Example 7.52 was proposed in 1929 by Hill [557], providing a practi-
cal method for polygraphic substitution, albeit a linear transformationsusceptible to known-
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plaintext attack. Hill also recognized that using an involution as the encryption mapping al-
lowed the same function to provide decryption. Recent contributions on homophonic sub-
stitution include Günther [529] and Jendal, Kuhn, and Massey [636].

Among the unrivalled cryptanalytic contributions of the Russian-born American Friedman
is his 1920 Riverbank Publication no.22 [426] on cryptanalysis using the index of coinci-
dence. Friedman coined the term cryptanalysis in 1920, using it in his 1923 book Elements
of Cryptanalysis [425], a 1944 expansion of which, Military Cryptanalysis [423], remains
highly recommended. The method of Kasiski (from West Prussia) was originally published
in 1863; see Kahn [648, pp.208-213] for a detailed example. The discussion on IC and MR
follows that of Denning [326], itself based on Sinkov [1152]. Fact 7.75 follows from a stan-
dard expectation computation weighted by κp or κr depending on whether the second of a
pair of randomly selected ciphertext characters is from the same ciphertext alphabet or one
of the t − 1 remaining alphabets. The values in Table 7.1 are from Kahn [648], and vary
somewhat over time as languages evolve.

Friedman teaches how to cryptanalyze running-key ciphers in his (circa 1918) Riverbank
Publication no.16, Methods for the Solution of Running-Key Ciphers; the two basic tech-
niques are outlined by Diffie and Hellman [347]. The first is a probable word attack wherein
an attacker guesses an (e.g., 10 character) word hopefully present in underlying text, and
subtracts that word (mod 26) from all possible starting locations in the ciphertext in hopes
of finding a recognizable 10-character result, where-after the guessed word (as either par-
tial running-key or plaintext) might be extended using context. Probable-word attacks also
apply to polyalphabetic substitution. The second technique is based on the fact that each
ciphertext letter c results from a pair of plaintext/running-key letters (mi,m′i), and is most
likely to result from such pairs wherein bothmi andm′i are high-frequency characters; one
isolates the highest-probability pairs for each such ciphertext character value c, makes trial
assumptions, and attempts to extend apparently successful guesses by similarly decrypting
adjacent ciphertext characters; see Denning [326, p.83] for a partial example. Diffie and
Hellman [347] note Fact 7.59 as an obvious method that is little-used (modern ciphers be-
ing more convenient); their suggestion that use of four iterative running keys is unbreakable
follows from English being 75% redundant. They also briefly summarize various scram-
bling techniques (encryption via analog rather than digital methods), noting that analog
scramblers are sometimes used in practice due to lower bandwidth and cost requirements,
although such known techniques appear relatively insecure (possibly an inherent character-
istic) and their use is waning as digital networks become prevalent.

Denning [326] tabulates digrams into high, medium, low, and rare classes. Konheim [705,
p.24] provides transition probabilities p(t|s), the probability that the next letter is t given
that the current character is s in English text, in a table also presented by H. van Tilborg
[1210]. Single-letter distributions in plaintext languages other than English are given by
Davies and Price [308]. The letter frequencies in Figure 7.5, which should be interpreted
only as an estimate, were derived by Meyer and Matyas [859] using excerpts totaling 4 mil-
lion characters from the 1964 publication: W. Francis, A Standard Sample of Present-Day
Edited American English for Use with Digital Computers, Linguistics Dept., Brown Uni-
versity, Providence, Rhode Island, USA. Figure 7.6 is based on data from Konheim [705,
p.19] giving an estimated probability distribution of 2-grams in English, derived from a
sample of size 67 320 digrams.

See Shannon [1122] and Cover and King [285] regarding redundancy and Fact 7.67. While
not proven in any concrete manner, Fact 7.68 is noted by Friedman [424] and generally
accepted. Unicity distance was defined by Shannon [1121]. Related issues are discussed in
detail in various appendices of Meyer and Matyas [859]. Fact 7.71 and the random cipher
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model are due to Shannon [1121]; see also Hellman [548].

Diffie and Hellman [347] give an instructive overview of rotor machines (see also Denning
[326]), and note their use in World War II by the Americans in their highest level system, the
British, and the Germans (Enigma); they also give Fact 7.63 and the number of characters
required under ciphertext-only and known-plaintext attacks (Note 7.66). Beker and Piper
[84] provide technical details of the Hagelin M-209, as does Kahn [648, pp.427-431] who
notes its remarkable compactness and weight: 3.25 x 5.5 x 7 inches and 6 lb. (including
case); see also Barker [74], Morris [906], and Rivest [1053]. Davies and Price [308] briefly
discuss the Enigma, noting it was cryptanalyzed during World War II in Poland, France, and
then in the U.K. (Bletchley Park); see also Konheim [705].

The Japanese PURPLE cipher, used during World War II, was a polyalphabetic cipher crypt-
analyzed August 1940 [648, p.18-23] by Friedman’s team in the U.S. Signal Intelligence
Service, under (Chief Signal Officer) Mauborgne. The earlier RED cipher used two rotor
arrays; preceding it, the ORANGE system implemented a vowels-to-vowels, consonants-
to-consonants cipher using sets of rotors.

§7.4
The concept of fractionation, related to product ciphers, is noted by Feistel [387], Shannon
[1121], and Kahn [648, p.344] who identifies this idea in an early product cipher, the WWI
German ADFGVX field cipher. As an example, an encryption function might operate on
a block of t = 8 plaintext characters in three stages as follows: the first substitutes two
symbols for each individual character; the second transposes (mixes) the substituted sym-
bols among themselves; the third re-groups adjacent resulting symbols and maps them back
to the plaintext alphabet. The action of the transposition on partial (rather than complete)
characters contributes to the strength of the principle.

Shannon [1121, §5 and §23-26] explored the idea of the product of two ciphers, noted the
principles of confusion and diffusion (Remark 1.36), and introduced the idea of a mixing
transformation F (suggesting a preliminary transposition followed by a sequence of alter-
nating substitution and simple linear operations), and combining ciphers in a product using
an intervening transformation F . Transposition and substitution, respectively, rest on the
principles of diffusion and confusion. Harpes, Kramer, and Massey [541] discuss a general
model for iterated block ciphers (cf. Definition 7.80).

The name Lucifer is associated with two very different algorithms. The first is an SP net-
work described by Feistel [387], which employs (bitwise nonlinear) 4 × 4 invertible S-
boxes; the second, closely related to DES (albeit significantly weaker), is described by
Smith [1160] (see also Sorkin [1165]). Principles related to both are discussed by Feis-
tel, Notz, and Smith [388]; both are analyzed by Biham and Shamir [138], and the latter in
greater detail by Ben-Aroya and Biham [108] whose extension of differential cryptanaly-
sis allows, using 236 chosen plaintexts and complexity, attack on 55% of the key space in
Smith’s Lucifer – still infeasible in practice, but illustrating inferiority to DES despite the
longer 128-bit key.

Feistel’s product cipher Lucifer [387], instantiated by a blocksize n = 128, consists of an
unspecified number of alternating substitution and permutation (transposition) stages, using
a fixed (unpublished) n-bit permutation P and 32 parallel identical S-boxes each effecting
a mapping S0 or S1 (fixed but unpublished bijections on {0, 1}4), depending on the value
of one key bit; the unpublished key schedule requires 32-bits per S-box stage. Each stage
operates on all n bits; decryption is by stage-wise inversion of P and Si.

The structure of so-called Feistel ciphers (Definition 7.81) was first introduced in the Lu-
cifer algorithm of Smith [1160], the direct predecessor of DES. This 16-round algorithm
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with 128-bit key operates on alternating half-blocks of a 128-bit message block with a sim-
plified f function based on two published invertible 4×4 bit S-boxesS0 and S1 (cf. above).
Feistel, Notz, and Smith [388] discuss both the abstract Feistel cipher structure (suggesting
its use with non-invertible S-boxes) and SP networks based on invertible (distinct) S-boxes.
Suggestions for SP networks include the use of single key bits to select one of two map-
pings (a fixed bijection or its inverse) from both S-boxes and permutation boxes; decryption
then uses a reversed key schedule with complemented key. They also noted the multi-round
avalanche effect of changing a single input bit, subsequently pursued by Kam and Davida
[659] in relation to SP networks and S-boxes having a completeness property: for every pair
of bit positions i, j, there must exist at least two input blocks x, y which differ only in bit i
and whose outputs differ in at least bit j. More simply, a function is complete if each output
bit depends on all input bits. Webster and Tavares [1233] proposed the more stringent strict
avalanche criterion: whenever one input bit is changed, every output bit must change with
probability 1/2.

DES resulted from IBM’s submission to the 1974 U.S. National Bureau of Standards (NBS)
solicitation for encryption algorithms for the protection of computer data. The original
specification is the 1977 U.S. Federal Information Processing Standards Publication 46
[396], reprinted in its entirety as Appendix A in Meyer and Matyas [859]. DES is now spec-
ified in FIPS 46–2, which succeeded FIPS 46–1; the same cipher is defined in the American
standard ANSI X3.92 [33] and referred to as the Data Encryption Algorithm (DEA). Differ-
ences between FIPS 46/46–1 and ANSI X3.92 included the following: these earlier FIPS
required that DES be implemented in hardware and that the parity bits be used for parity;
ANSI X3.92 specifies that the parity bits may be used for parity. Although no purpose was
stated by the DES designers for the permutations IP and IP−1, Preneel et al. [1008] provided
some evidence of their cryptographic value in the CFB mode.

FIPS 81 [398] specifies the common modes of operation. Davies and Price [308] provide a
comprehensive discussion of both DES and modes of operation; see also Diffie and Hellman
[347], and the extensive treatment of Meyer and Matyas [859]. The survey of Smid and
Branstad [1156] discusses DES, its history, and its use in the U.S. government. Test vectors
for various modes of DES, including the ECB vectors of Example 7.86, may be found in
ANSI X3.106 [34]. Regarding exhaustive cryptanalysis of DES and related issues, see also
the notes under §7.2.

The 1981 publication FIPS 74 [397] notes that DES is not (generally) commutative under
two keys, and summarizes weak and semi-weak keys using the term dual keys to include
both (weak keys being self-dual); see also Davies [303] and Davies and Price [308]. Cop-
persmith [268] noted Fact 7.90; Moore and Simmons [900] pursue weak and semi-weak
DES keys and related phenomena more rigorously.

The 56-bit keylength of DES was criticized from the outset as being too small (e.g., see
Diffie and Hellman [346], and p.272 above). Claims which have repeatedly arisen and been
denied (e.g., see Tuchman [1199]) over the past 20 years regarding built-in weaknesses of
DES (e.g., trap-door S-boxes) remain un-substantiated. Fact 7.91 is significant in that if the
permutation group were closed under composition, DES would fall to a known-plaintext
attack requiring 228 steps – see Kaliski, Rivest, and Sherman [654], whose cycling exper-
iments provided strong evidence against this. Campbell and Wiener [229] prove the fact
conclusively (and give the stated lower bound), through their own cycling experiments uti-
lizing collision key search and an idea outlined earlier by Coppersmith [268] for establish-
ing a lower bound on the group size; they attribute to Coppersmith the same result (in un-
published work), which may also be deduced from the cycle lengths published by Moore
and Simmons [901].
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Countless papers have analyzed various properties of DES; Davies and Price [308, pp.73-
75] provide a partial summary to 1987. Subsequent to the discovery of differential crypt-
analysis (DC) by Biham and Shamir, Coppersmith [271] explains how DES was specifically
designed 15 years earlier to counter DC, citing national security concerns regarding the de-
sign team publishing neither the attack nor design criteria; then gives the (relevant) design
criteria – some already noted by others, e.g., see Hellman et al. [552] – for DES S-boxes
and the permutation P , explaining how these preclude DC. Coppersmith notes elements of
DC were present in the work of den Boer [322], followed shortly by Murphy [913]. DES
was not, however, specifically designed to preclude linear cryptanalysis (LC); Matsui [797]
illustrates the order of the 8 DES S-boxes, while a strong (but not optimal) choice against
DC, is relatively weak against LC, and that DES can be strengthened (vs. DC and LC) by
carefully re-arranging these. Despite Remark 7.93, a DES key has actually been recovered
by Matsui [795] using LC under experimental conditions (using 243 known-plaintext pairs
from randomly generated plaintexts, and 243 complexity running twelve 99 MHz machines
over 50 days); such a result remains to be published for exhaustive search or DC.

Ben-Aroya and Biham [108] note that often suggestions to redesign DES, some based on de-
sign criteria and attempts to specifically resist DC, have resulted in (sometimes far) weaker
systems, including the RDES (randomized DES) proposal of Koyama and Terada [709],
which fall to variant attacks. The lesson is that in isolation, individual design principles do
not guarantee security.

DES alternatives are sought not only due to the desire for a keylength exceeding 56 bits,
but also because its bit-oriented operations are inconvenient in conventional software im-
plementations, often resulting in poor performance; this makes triple-DES less attractive.
Regarding fast software implementations of DES, see Shepherd [1124], Pfitzmann and Aß-
mann [970], and Feldmeier and Karn [391].

§7.5
FEAL stimulated the development of a sequence of advanced cryptanalytic techniques of
unparalleled richness and utility. While it appears to remain relatively secure when iterated
a sufficient number of rounds (e.g., 24 or more), this defeats its original objective of speed.
FEAL-4 as presented at Eurocrypt’87 (Abstracts of Eurocrypt’87, April 1987) was found to
have certain vulnerabilities by den Boer (unpublished Eurocrypt’87 rump session talk), re-
sulting in Shimizu and Miyaguchi [1126] (or see Miyaguchi, Shiraishi, and Shimizu [887])
increasing FEAL to 8 rounds in the final proceedings. In 1988 den Boer [322] showed
FEAL-4 vulnerable to an adaptive chosen plaintext attack with 100 to 10 000 plaintexts. In
1990, Gilbert and Chassé [455] devised a chosen-plaintext attack (called a statistical meet-
in-the-middle attack) on FEAL-8 requiring 10 000 pairs of plaintexts, the bitwise XOR of
each pair being selected to be an appropriate constant (thus another early variant of differ-
ential cryptanalysis).

FEAL-N with N rounds, and its extension FEAL-NX with 128-bit key (Notes 7.97 and
7.98) were then published by Miyaguchi [884] (or see Miyaguchi et al. [885]), who nonethe-
less opined that chosen-plaintext attacks on FEAL-8 were not practical threats. However,
improved chosen-plaintext attacks were subsequently devised, as well as known-plaintext
attacks. Employing den Boer’s G function expressing linearity in the FEAL f -function,
Murphy [913] defeated FEAL-4 with 20 chosen plaintexts in under 4 hours (under 1 hour
for most keys) on a Sun 3/60 workstation. A statistical method of Tardy-Corfdir and Gilbert
[1187] then allowed a known-plaintext attack on FEAL-4 (1000 texts; or 200 in an an-
nounced improvement) and FEAL-6 (2× 10 000 texts), involving linear approximation of
FEAL S-boxes. Thereafter, the first version of linear cryptanalysis (LC) introduced by Mat-
sui and Yamagishi [798] allowed known-plaintext attack of FEAL-4 (5 texts, 6 minutes on
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a 25MHz 68040 processor), FEAL-6 (100 texts, 40 minutes), and FEAL-8 (228 texts, in
time equivalent to exhaustive search on 50-bit keys); the latter betters the 238 texts required
for FEAL-8 by Biham and Shamir [136] in their known-plaintext conversion of differen-
tial cryptanalysis (DC). Biham and Shamir [138, p.101] later implemented a DC chosen-
plaintext attack recovering FEAL-8 keys in two minutes on a PC using 128 chosen pairs,
the program requiring 280K bytes of storage. Biham [132] subsequently used LC to defeat
FEAL-8 with 224 known-plaintexts in 10 minutes on a personal computer. Ohta and Aoki
[943] suggest that FEAL-32 is as secure as DES against DC, while FEAL-16 is as secure
as DES against certain restricted forms of LC.

Differential-linear cryptanalysis was introduced by Langford and Hellman [741], combin-
ing linear and differential cryptanalysis to allow a reduced 8-round version of DES to be
attacked with fewer chosen-plaintexts than previous attacks. Aoki and Ohta [53] refined
these ideas for FEAL-8 yielding a differential-linear attack requiring only 12 chosen texts
and 35 days of computer time (cf. Table 7.10).

Test vectors for FEAL-N and FEAL-NX (Example 7.99) are given by Miyaguchi [884].
The DC attack of Biham and Shamir [137], which finds FEAL-N subkeys themselves, is
equally as effective on FEAL-NX. Biham [132] notes that an LC attack on FEAL-N is pos-
sible with less than 264 known plaintexts (and complexity) for up toN = 20. For additional
discussion of properties of FEAL, see Biham and Shamir [138, §6.3].

§7.6
The primary reference for IDEA is Lai [726]. A preliminary version introduced by Lai and
Massey [728] was named PES (Proposed Encryption Standard). Lai, Massey, and Murphy
[730] showed that a generalization (see below) of differential cryptanalysis (DC) allowed
recovery of PES keys, albeit requiring all 264 possible ciphertexts (cf. exhaustive search
of 2128 operations). Minor modifications resulted in IPES (Improved PES): in stage r, 1 ≤
r ≤ 9, the group operations keyed byK(r)2 andK(r)4 (� and� in Figure 7.11) were reversed
from PES; the permutation on 16-bit blocks after stage r, 1 ≤ r ≤ 9, was altered; and
necessary changes were made in the decryption (but not encryption) key schedule. IPES
was commercialized under the name IDEA, and is patented (see Chapter 15).

The ingenious design of IDEA is supported by a careful analysis of the interaction and alge-
braic incompatibilities of operations across the groups (F2

n,⊕), (Z2n ,�), and (Z∗2n+1,�).
The design of the MA structure (see Figure 7.11) results in IDEA being “complete” after a
single round; for other security properties, see Lai [726]. Regarding mixing operations from
different algebraic systems, see also the 1974 examination by Grossman [522] of transfor-
mations arising by alternating mod 2n and mod 2 addition (⊕), and the use of arithmetic
modulo 232 − 1 and 232 − 2 in MAA (Algorithm 9.68).

Daemen [292, 289] identifies several classes of so-called weak keys for IDEA, and notes a
small modification to the key schedule to eliminate them. The largest is a class of 251 keys
for which membership can be tested in two encryptions plus a small number of computa-
tions, whereafter the key itself can be recovered using 16 chosen plaintext-difference en-
cryptions, on the order of 216 group operations, plus 217 key search encryptions. The prob-
ability of a randomly chosen key being in this class is 251/2128 = 2−77. A smaller number
of weak key blocks were observed earlier by Lai [726], and dismissed as inconsequential.
The analysis of Meier [832] revealed no attacks feasible against full 8-round IDEA, and
supports the conclusion of Lai [726] that IDEA appears to be secure against DC after 4 of
its 8 rounds (cf. Note 7.107). Daemen [289] also references attacks on reduced-round vari-
ants of IDEA. While linear cryptanalysis (LC) can be applied to any iterated block cipher,
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Harpes, Kramer, and Massey [541] provide a generalization thereof; IDEA and SAFER K-
64 are argued to be secure against this particular generalization.

Lai, Massey, and Murphy [730] (see also Lai [726]) generalized DC to apply to Markov
ciphers (which they introduced for this purpose; DES, FEAL, and LOKI are all examples
under the assumption of independent round keys) including IDEA; broadened the notion of
a difference from that based on ⊕ to: ∆X = X ⊗ (X∗)−1 where ⊗ is a specified group
operation and (X∗)−1 is the group inverse of an elementX∗; and defined an i-round differ-
ential (as opposed to an i-round characteristic used by Biham and Shamir [138] on DES) to
be a pair (α, β) such that two distinct plaintexts with difference∆X = α results in a pair
of round i outputs with difference β.

Decimal values corresponding to Tables 7.12 and 7.13 may be found in Lai [726]. A table-
based alternative for multiplication mod 216 + 1 (cf. Note 7.104) is to look up the anti-log
of logα(a) + logα(b) mod 2

16, relative to a generator α of Z∗216+1; the required tables,
however, are quite large.

§7.7
Massey [787] introduced SAFER K-64 with a 64-bit key and initially recommended 6
rounds, giving a reference implementation and test vectors (cf. Example 7.114). It is not
patented. Massey [788] then published SAFER K-128 (with a reference implementation),
differing only in its use of a non-proprietary (and backwards compatible) key schedule ac-
commodating 128-bit keys, proposed by a Singapore group; 10 rounds were recommended
(12 maximum). Massey [788] gave further justification for design components of SAFER
K-64. Vaudenay [1215] showed SAFER K-64 is weakened if the S-box mapping (Re-
mark 7.112) is replaced by a random permutation.

Knudsen [685] proposed the modified key schedule of Note 7.110 after finding a weakness
in 6-round SAFER K-64 that, while not of practical concern for encryption (with 245 chosen
plaintexts, it finds 8 bits of the key), permitted collisions when using the cipher for hashing.
This and a subsequent certificational attack on SAFER K-64 by S. Murphy (to be published)
lead Massey (“Strengthened key schedule for the cipher SAFER”, posted to the USENET
newsgroup sci.crypt, September 9 1995) to advise adoption of the new key schedule, with
the resulting algorithm distinguished as SAFER SK-64 with 8 rounds recommended (min-
imum 6, maximum 10); an analogous change to the 128-bit key schedule yields SAFER
SK-128 for which 10 rounds remain recommended (maximum 12). A new variant of DC
by Knudsen and Berson [687] using truncated differentials (building on Knudsen [686])
yields a certificational attack on 5-round SAFER K-64 with 245 chosen plaintexts; the at-
tack, which does not extend to 6 rounds, indicates that security is less than argued by Massey
[788], who also notes that preliminary attempts at linear cryptanalysis of SAFER were un-
successful.

RC5 was designed by Rivest [1056], and published along with a reference implementation.
The magic constants of Table 7.14 are based on the golden ratio and the base of natural log-
arithms. The data-dependent rotations (which vary across rounds) distinguish RC5 from
iterated ciphers which have identical operations each round; Madryga [779] proposed an
earlier (less elegant) cipher involving data-dependent rotations. A preliminary examination
by Kaliski and Yin [656] suggested that, while variations remain to be explored, standard
linear and differential cryptanalysis appear impractical for RC5–32 (64-bit blocksize) for
r = 12: their differential attacks on 9 and 12 round RC5 require, respectively, 245, 262

chosen-plaintext pairs, while their linear attacks on 4, 5, and 6-round RC5–32 require, re-
spectively, 237, 247, 257 known plaintexts. Both attacks depend on the number of rounds
and the blocksize, but not the byte-length of the input key (since subkeys are recovered di-
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rectly). Knudsen and Meier [689] subsequently presented differential attacks on RC5 which
improved on those of Kaliski and Yin by a factor up to 512, and showed that RC5 has so-
called weak keys (independent of the key schedule) for which these differential attacks per-
form even better.

LOKI was introduced by Brown, Pieprzyk, and Seberry [215] and renamed LOKI’89 after
the discovery of weaknesses lead to the introduction of LOKI’91 by Brown et al. [214].
Knudsen [682] noted each LOKI’89 key fell into a class of 16 equivalent keys, and the
differential cryptanalysis of Biham and Shamir [137] was shown to be effective against
reduced-round versions. LOKI’91 failed to succumb to differential analysis by Knudsen
[683]; Tokita et al. [1193] later confirmed the optimality of Knudsen’s characteristics, sug-
gesting that LOKI’89 and LOKI’91 were resistant to both ordinary linear and differential
cryptanalysis. However, neither should be used for hashing as originally proposed (see
Knudsen [682]) or in other modes (see Preneel [1003]). Moreover, both are susceptible
to related-key attacks (Note 7.6), popularized by Biham [128, 129]; but see also the ear-
lier ideas of Knudsen [683]. Distinct from these are key clustering attacks (see Diffie and
Hellman [347, p.410]), wherein a cryptanalyst first finds a key “close” to the correct key,
and then searches a cluster of “nearby” keys to find the correct one.

8 × 32 bit S-boxes first appeared in the Snefru hash function of Merkle [854]; here such
fixed S-boxes created from random numbers were used in its internal encryption mapping.
Regarding large S-boxes, see also Gordon and Retkin [517], Adams and Tavares [7], and
Biham [132]. Merkle [856] again used 8 × 32 S-boxes in Khufu and Khafre (see also
§15.2.3(viii)). In this 1990 paper, Merkle gives a chosen-plaintext differential attack de-
feating 8 rounds of Khufu (with secret S-box). Regarding 16-round Khafre, a DC attack by
Biham and Shamir [138, 137] requires somewhat over 1500 chosen plaintexts and one hour
on a personal computer, and their known-plaintext differential attack requires 237.5 plain-
texts; for 24-round Khafre, they require 253 chosen plaintexts or 258.5 known plaintexts.
Khufu with 16 rounds was examined by Gilbert and Chauvaud [456], who gave an attack
using 243 chosen plaintexts and about 243 operations.

CAST is a design procedure for a family of DES-like ciphers, featuring fixed m × n bit
S-boxes (m < n) based on bent functions. Adams and Tavares [7] examine the construc-
tion of large S-boxes resistant to differential cryptanalysis, and give a partial example (with
64-bit blocklength and 8× 32 bit S-boxes) of a CAST cipher. CAST ciphers have variable
keysize and numbers of rounds. Rijmen and Preneel [1049] presented a cryptanalytic tech-
nique applicable to Feistel ciphers with non-surjective round functions (e.g., LOKI’91 and
an example CAST cipher), noting cases where 6 to 8 rounds is insufficient.

Blowfish is a 16-round DES-like cipher due to Schneier [1093], with 64-bit blocks and keys
of length up to 448 bits. The computationally intensive key expansion phase creates eigh-
teen 32-bit subkeys plus four 8 × 32 bit S-boxes derived from the input key (cf. Khafre
above), for a total of 4168 bytes. See Vaudenay [1216] for a preliminary analysis of Blow-
fish.

3-WAY is a block cipher with 96-bit blocksize and keysize, due to Daemen [289] and intro-
duced by Daemen, Govaerts, and Vandewalle [290] along with a reference C implementa-
tion and test vectors. It was designed for speed in both hardware and software, and to resist
differential and linear attacks. Its core is a 3-bit nonlinear S-box and a linear mapping rep-
resentable as polynomial multiplication in Z122 .

SHARK is an SP-network block cipher due to Rijmen et al. [1048] (coordinates for a refer-
ence implementation are given) which may be viewed as a generalization of SAFER, em-
ploying highly nonlinear S-boxes and the idea of MDS codes (cf. Note 12.36) for diffusion
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to allow a small number of rounds to suffice. The block ciphers BEAR and LION of An-
derson and Biham [30] are 3-round unbalanced Feistel networks, motivated by the earlier
construction of Luby and Rackoff [776] (see also Maurer [816] and Lucks [777]) which
provides a provably secure (under suitable assumptions) block cipher from pseudorandom
functions using a 3-round Feistel structure. SHARK, BEAR, and LION all remain to be
subjected to independent analysis in order to substantiate their conjectured security levels.

SKIPJACK is a classified block cipher whose specification is maintained by the U.S. Na-
tional Security Agency (NSA). FIPS 185 [405] notes that its specification is available to
organizations entering into a Memorandum of Agreement with the NSA, and includes in-
terface details (e.g., it has an 80-bit secret key). A public report contains results of a pre-
liminary security evaluation of this 64-bit block cipher (“SKIPJACK Review, Interim Re-
port, The SKIPJACK Algorithm”, 1993 July 28, by E.F. Brickell, D.E. Denning, S.T. Kent,
D.P. Maher, and W. Tuchman). See also Roe [1064, p.312] regarding curious results on the
cyclic closure tests on SKIPJACK, which give evidence related to the size of the cipher
keyspace.

GOST 28147-89 is a Soviet government encryption algorithm with a 32-round Feistel struc-
ture and unspecified S-boxes; see Charnes et al. [241].

RC2 is a block cipher proprietary to RSA Data Security Inc. (as is the stream cipher RC4).
WAKE is a block cipher due to Wheeler [1237] employing a key-dependent table, intended
for fast encryption of bulk data on processors with 32-bit words. TEA (Tiny Encryption
Algorithm) is a block cipher proposed by Wheeler and Needham [1238].
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