
CS29003 Algorithms Laboratory

Assignment No: 9

Date: 31–March–2020

Graph Traversals and Their Applications

Let G = (V,E) be an undirected graph. Some vertices of G are red, and the others are blue. Let VR denote

the set of red vertices of G, and VB the set of blue vertices of G. The vertex set V of G is the union of the

two disjoint sets VR and VB. Likewise, the edge set E of G is the union of three mutually disjoint subsets:

the set ERR of edges with both endpoints red, the set EBB of edges with both endpoints blue, and the set

ERB of edges with endpoints of two different colors. We have the two induced subgraphs: the red subgraph

GR = (VR,ERR), and the blue subgraph GB = (VB,EBB). We will define a subgraph GRB of G later (in Part 5).

A cycle in the red subgraph GR is called a red cycle. Likewise, a cycle in the blue subgraph GB is called

a blue cycle. A red or a blue cycle is called monochromatic, since such a cycle consists of vertices of the

same color. On the other hand, a cycle in G with vertices of both the colors is called nonmonochromatic.

In this assignment, you write a program to identify the existence of monochromatic and nonmonochromatic

cycles, and print some of them.

The following figure demonstrates such a graph. A red cycle in the graph is (5,11,13,15). A blue cycle in

the graph is (0,3,12,9,14,7). These cycles are monochromatic. Two nonmonochromatic cycles in the graph

are (5,12,4,16,11,13,15) and (13,7,10,9,12,3,15,5). We assume that a cycle does not contain repeated

vertices (except the first and the last ones). For a reason to be explained later, some of the edges of G are

shown in bold. The two examples of nonmonochromatic cycles given above use only the bold edges.

0

1

2

3

4

5

6

7

89

10

11

12

13 14

15

16

ERB

G

G

R

B

Part 1: Storage of an undirected graph

Write a user-defined data type to store the following information about an undirected graph.

• The number of vertices in the graph (an integer).

• The colors of the vertices (an array of characters r and b).

• The vertex numbers (an array of integers): Let G have n vertices. These vertices are naturally

numbered as 0,1,2,3, . . . ,n− 1. However, the vertices of the monochromatic subgraphs cannot be

so numbered. The red subgraph in the above example has the vertex set {2,4,5,6,11,13,15}. These

vertices may be indexed as 0,1,2,3,4,5,6, but their original numbers from G should be stored.

— Page 1 of 4 —



• The edges of the graph: Use the adjacency-list (not matrix) representation to store the edges. Since we

are dealing with undirected graphs, for every undirected edge (u,v), v must appear in the adjacency

list of u, and u in the adjacency list of v. There is no need to keep the adjacency lists sorted (with

respect to the numbers of the neighboring vertices).

Part 2: Read and print a graph

Write a function readgraph to return a graph G constructed from user inputs. The user first enters the

number n of vertices of G, followed by the colors of the vertices, and finally by the list of edges. Each edge

is specified by a pair (u,v) (see the sample I/O section). It is the responsibility of the user to avoid entering

the same edge multiple times. When the user is done with entering the edges, −1 is entered as u in order to

indicate the end of the input session.

Write another function prngraph to print a graph in a format illustrated in the sample I/O.

Part 3: Get the red and the blue subgraphs

Write a function getcolgraph(G,color) that, given the graph G and a color (r or b), generates GR or GB as

color suggests, and returns this subgraph.

Part 4: DFS traversal in a graph, and detection of cycles

Write a recursive DFS function, and a multi-DFS function for an input graph. The traversal carries out two

additional tasks. First, whenever a back edge is detected, the cycle causing this back edge is printed along

with the colors of the vertices on the cycle (see Sample I/O). All cycles in a graph are not printed by a

multi-DFS traversal. It suffices to print only the cycles corresponding to the back edges. Second, all the

edges of the DFS forest are stored in the parent representation in an array. You also need to maintain the

levels of the nodes in the DFS trees in order to identify the back edges. To be more precise, if u recursively

calls DFS on v, you should set parent[v] = u, and level[v] = level[u]+1. Of course, you additionally need

to use a visited array. The parent array is to be returned by the multi-DFS function.

Part 5: Construct the graph GRB

The parent array returned by multi-DFS on GR identifies a set of edges FRR ⊆ ERR defining the DFS forest in

GR. Likewise, we have the edges FBB ⊆ EBB of the DFS forest in GB. Write a function getrbgraph to create

and return the graph GRB = (V,FRR ∪FBB ∪ERB). Pass, as arguments to this function, whatever you need for

the construction of GRB. The edges of GRB are shown as bold in the figure on the first page. The existence

of nonmonochromatic cycles in G is related to GRB as follows:

Claim: G contains a nonmonochromatic cycle if and only if GRB contains a cycle.

The main() function

• Call readgraph to construct the graph G from user inputs. Call prngraph to print G.

• Call getcolgraph twice with color = r and color = b to get GR and GB. Print the graphs.

• Invoke the multi-DFS function, once on GR and once more on GB, to print the red and the blue cycles

detected by the traversals. As by-products, you also get the red and the blue forest edges returned in

the parent arrays by the two calls of multi-DFS.

• Construct GRB using getrbgraph. Print the graph.

• Call multi-DFS on GRB to detect the existence of nonmonochromatic cycles in G. The returned parent

array has no role for this call.

Theoretical Exercise (not for submission): Prove the claim given in Part 5.

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 4 —



Sample I/O

20

b r b b b b r b r b r r r b b b b r b b

0 2 0 10 0 15 0 19 1 5 1 16 2 7 2 9 3 12 4 5 4 10

6 17 6 18 6 19 7 13 9 16 10 15 13 15 13 18 13 19 16 17 18 19

-1

+++ Original graph (G)

[b] 0 -> 2, 10, 15, 19

[r] 1 -> 5, 16

[b] 2 -> 0, 7, 9

[b] 3 -> 12

[b] 4 -> 5, 10

[b] 5 -> 1, 4

[r] 6 -> 17, 18, 19

[b] 7 -> 2, 13

[r] 8 ->

[b] 9 -> 2, 16

[r] 10 -> 0, 4, 15

[r] 11 ->

[r] 12 -> 3

[b] 13 -> 7, 15, 18, 19

[b] 14 ->

[b] 15 -> 0, 10, 13

[b] 16 -> 1, 9, 17

[r] 17 -> 6, 16

[b] 18 -> 6, 13, 19

[b] 19 -> 0, 6, 13, 18

+++ Red subgraph (GR)

[r] 1 ->

[r] 6 -> 17

[r] 8 ->

[r] 10 ->

[r] 11 ->

[r] 12 ->

[r] 17 -> 6

+++ Blue subgraph (GB)

[b] 0 -> 2, 15, 19

[b] 2 -> 0, 7, 9

[b] 3 ->

[b] 4 -> 5

[b] 5 -> 4

[b] 7 -> 2, 13

[b] 9 -> 2, 16

[b] 13 -> 7, 15, 18, 19

[b] 14 ->

[b] 15 -> 0, 13

[b] 16 -> 9

[b] 18 -> 13, 19

[b] 19 -> 0, 13, 18

+++ Red cycles

+++ Blue cycles

(15, 13, 7, 2, 0), Color: (b, b, b, b, b)

(19, 18, 13, 7, 2, 0), Color: (b, b, b, b, b, b)

(19, 18, 13), Color: (b, b, b)

+++ Nonmonochromatic graph (GRB)

[b] 0 -> 10, 2

[r] 1 -> 16, 5

[b] 2 -> 9, 7, 0

[b] 3 -> 12

[b] 4 -> 10, 5

[b] 5 -> 1, 4

[r] 6 -> 19, 18, 17

[b] 7 -> 13, 2

[r] 8 ->

[b] 9 -> 16, 2

[r] 10 -> 15, 4, 0

[r] 11 ->

[r] 12 -> 3

[b] 13 -> 18, 15, 7

[b] 14 ->

— Page 3 of 4 —



[b] 15 -> 10, 13

[b] 16 -> 17, 1, 9

[r] 17 -> 16, 6

[b] 18 -> 6, 19, 13

[b] 19 -> 6, 18

+++ Multi-color cycles

(19, 6, 18), Color: (b, r, b)

(4, 5, 1, 16, 17, 6, 18, 13, 15, 10), Color: (b, b, r, b, r, r, b, b, b, r)

(7, 2, 9, 16, 17, 6, 18, 13), Color: (b, b, b, b, r, r, b, b)

(2, 9, 16, 17, 6, 18, 13, 15, 10, 0), Color: (b, b, b, r, r, b, b, b, r, b)

— Page 4 of 4 —


