
CS29003 Algorithms Laboratory

Assignment No: 8

Date: 24–March–2020

Heaps and Priority Queues

This assignment deals with a max-heap (or max-priority queue) with each node storing multiple keys.

Denote by p the key capacity of each node. The nodes are stored in the contiguous representation. Each

node, except possibly the last, must be full (that is, must contain p keys). The keys in each node are stored

in an array which is not needed to be sorted in any order (ascending or descending). The heap ordering

property must hold, that is, if k is any key in any node, and k′ any key in any of its child nodes, then we must

have k > k′. Multiple keys of the same value may be present in (one or more) nodes of the heap. Let us call

such a heap a multi-heap (although this term is used with a different meaning in other technical contexts).

The following figure illustrates a multi-heap with n = 19 keys and with node capacity p = 4.

Number of nodes

Array of nodes

Number of keys

95

4 4 4 4 3

87 77 84 51 60 48 51 12 4733 60 41 45 2933 25 18 30

60
51

51
48

18

33
30

25
45

29
41

60
33

12
47

77
84

87

95

Node capacity

19

4

5

33 12 60 47

4 Number of keys

Keys

Representation of the multi−heapA max−heap with multiple keys per node

Multi-heap data structure

The right side of the above figure shows how you represent a multi-heap. Declare suitable user-defined data

types for this representation. Assume that the keys are integers (positive if you like).

Multi-heap functions

Implement the following functions for a multi-heap.

initheap(p,nmax) The user specifies the node capacity p and a maximum number nmax of keys that the

multi-heap is meant to store. This function allocates appropriate memory to the array of nodes based

upon nmax. It is your choice whether you make the indexing in this array zero-based or one-based.

The function also sets the current number of keys to n = 0, and the current number of nodes in use

to N = 0. At any point of time, these two counts are related as N =

⌈

n

p

⌉

=

⌊

n+ p−1

p

⌋

. An empty

multi-heap initialized in this manner is to be returned by this function.

insert(H,x) This function is used to insert a key x to a heap. The procedure works as follows. If the last node

is full, go to the next node and insert x there, else append x to the current last node. This insertion

may violate the heap-ordering property. This is repaired by moving the disturbance up toward the

root. Let the current node be q. If q is the root, we are done. Otherwise, let r be the parent node of

q. Compute the minimum key rmin in r and the maximum key qmax in q. If rmin > qmax, we are done.

Otherwise, pick the largest p of the keys in r and q for relocating in r, and the remaining (smaller)

keys for relocating in q. Then, proceed to r, and repeat.

findmax(H) If H is a non-empty multi-heap, then the maximum key resides in the root node. Since the key

arrays in nodes are not necessarily sorted, a linear (in p) max-finding algorithm suffices.

— Page 1 of 2 —

heapify(H, i) Modify the heapify procedure for binary heaps to work for multi-heaps. Compute the

minimum key qmin at the current node, and the maximum keys lmax and rmax at the two child nodes (if

present). If necessary, reallocate the keys, and move on to the appropriate child. The heapify function

is to be used only by delmax, so you may assume that there is at most one key placed out of order in

the node at which you heapify.

delmax(H) Remove the largest key from the root node. If the root node is the last node, we are done.

Otherwise, move any key from the last node to the root node. Call heapify at the root.

prnheap(H) This function prints a multi-heap in the format illustrated in the sample output.

The main() function

• The user enters the node capacity p and the total number n of keys to be inserted. Subsequently, the

user supplies n keys. Store the keys in an array A.

• Initialize a multi-heap H, and insert in H the keys stored in A one by one.

• Print the multi-heap after all the insertions.

• Keep on calling findmax, storing the returned value in A (from the end to beginning), and running

delmax on H, until H becomes empty. Print the array A (from beginning to end).

Sample output

10

128

407 958 777 425 129 909 423 401 962 700 410 285 910 634 203 966 131 220 927 883

457 130 521 904 829 965 927 540 375 201 927 734 211 757 211 293 666 535 594 680

287 956 918 197 590 121 215 674 241 142 557 650 172 130 607 901 996 586 494 371

739 421 157 851 178 268 144 797 703 638 477 890 646 395 139 237 469 254 811 662

348 420 313 420 450 872 374 446 458 768 769 197 241 826 948 320 995 144 169 750

682 546 641 381 894 680 518 363 887 381 925 235 753 290 556 255 162 882 654 572

702 423 722 843 302 722 163 349

+++ 128 insertions made

[996 995 966 965 962 958 956 948 927 927]

[927 918 909 904 894 890 887 883 872 826]

[925 910 901 882 851 843 829 797 777 753]

[674 666 662 646 594 590 477 469 458 450]

[811 769 768 757 750 734 682 680 680 641]

[739 722 722 703 702 700 654 650 572 556]

[634 607 586 557 421 268 178 157 144 638]

[285 254 237 220 211 211 203 139 131 129]

[446 420 420 407 401 395 374 348 313 293]

[287 241 241 215 197 197 169 144 142 121]

[546 535 518 425 423 410 381 363 320 381]

[375 371 290 255 235 201 172 162 130 130]

[540 521 494 457 423 302 163 349]

+++ 128 deletions made

+++ Input array sorted

121 129 130 130 131 139 142 144 144 157 162 163 169 172 178 197 197 201 203 211

211 215 220 235 237 241 241 254 255 268 285 287 290 293 302 313 320 348 349 363

371 374 375 381 381 395 401 407 410 420 420 421 423 423 425 446 450 457 458 469

477 494 518 521 535 540 546 556 557 572 586 590 594 607 634 638 641 646 650 654

662 666 674 680 680 682 700 702 703 722 722 734 739 750 753 757 768 769 777 797

811 826 829 843 851 872 882 883 887 890 894 901 904 909 910 918 925 927 927 927

948 956 958 962 965 966 995 996

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

