
CS29003 Algorithms Laboratory

Assignment No: 6

Date: 03–March–2020

Binary Trees

In this assignment, you construct a binary tree from user input. Assume that the nodes of the tree store

distinct keys. Your task is to convert the input tree in place to a binary search tree with respect to these key

values. The only operations permitted are child swaps and rotations (explained in Part 3). You are allowed

to read keys stored in the nodes, but you are not allowed to swap keys in two different nodes. You are also

not allowed to copy external data (keys) to the nodes. Your conversion process must not create any new

node. You need to achieve your objective by making a sequence of permitted operations (child swaps and

rotations) on the input binary tree. The final BST you produce should be balanced. Your algorithm should

run in O(n2) time, where n is the number of nodes in the tree.

Part 1: The tree data structure

Write a user-defined data type to store a node in binary trees. Each node should store an integer key, and

two child pointers (left and right). If you choose, you may include a parent pointer in each node. Besides

these, the nodes must not store any additional data.

Part 2: Construct the tree from user input

Write a function readtree to construct a binary tree from user input. The user first specifies the number n of

nodes in the tree. The user then specifies the keys in a preorder fashion. In addition to the key for a node, the

user also specifies the numbers of nodes in the left and the right subtrees of that node. The sample output

illustrates the user input. Assume that it is the user’s duty to supply n distinct key values, and subtree counts

consistent with a binary tree with n nodes. Your function may return a pointer to the root of the tree. For

a reason that will be clear soon, the function may additionally create a dummy root, make the actual root

the right child of the dummy root, and return a pointer to the dummy root. The key of the dummy root will

never be consulted, so this field may be kept uninitialized, or set to −∞.

Part 3: Utility functions

Write a function to print the preorder listing of the keys in a binary tree, and another function to print the

inorder listing of the keys in a binary tree. You can uniquely construct a tree from these two listings. You

may write another function prntree that calls these two listing functions.

In later parts, we need two operations on the nodes of a binary tree: (i) swapping the two child pointers of

a node, and (ii) left/right rotation at a node. These operations are explained in the figure below. Write three

functions swapchild, lrotate and rrotate. Each rotate function should return a pointer to the new root of the

rotated subtree. The parent of the old root should change its appropriate child pointer to point to the new

root. This is the reason why it is helpful for the root to have a dummy parent.

p

q

U V

W
p

q

V W

U

RotationSwap child nodes

U UV V

pp

Note that the rotate operations do not change the inorder listing of the tree, but a child swap operation does

(unless made on empty subtrees).

— Page 1 of 3 —



Part 4: Make the tree completely right-skew

By making a sequence of right rotations, make the tree completely right skew. Start at the root, and keep

on applying right rotations there until the left subtree becomes empty. Then proceed to the right child, and

repeat. This process takes O(n) time. Write a function makeskew for this part.

Part 5: Bubble sort the skew tree

After Part 4, your tree is essentially a linked list connected by the right-child links. For a general binary tree,

this list is not sorted in general. Write a function bsort to bubble sort this list. Bubble sort requires swapping

of data in consecutive locations. However, changing the key values of nodes is not permitted. A child swap,

a right rotation, and finally another child swap is a sequence that achieves swapping of two nodes in the

linked list. The following figure illustrates this process. The running time is O(n2).

3

5

2

1

4

7

3

5

2

1

4

7

6

8

Right rotate at 6 6

8

Swap child at 6

3

5

2

1

4

7

6

8

1

4

3

5

2

7

6

8

Swap child at 6

Part 6: Rebalance the skew tree

Finally, we want a balanced tree in the sense that at each node v, we must have |left(v)|− |right(v)| ∈ {0,1},

where |u| is the number of nodes in the subtree rooted at u. Write a function rebalance that works as follows.

After Part 5, the tree is fully right-skew. Locate the middle node in the list. Keep on applying left rotations

at the root until that middle element reaches the root position. At this point, the left subtree of the root is

fully left-skew, and the right subtree of the root is fully right-skew. Again, locate the middle nodes in the

two subtrees. Keep on applying rotations (right rotations at the left child of the root, and left rotations at

the right child of the root) until the middle nodes are placed in the desired locations. Recurse. This process

takes O(n logn) time.

The main() function

• Call readtree to construct the input binary tree T . Print T .

• Call makeskew on T . Print T .

• Call bsort on the right-skew tree T . Print T .

• Call rebalance on the sorted right-skew tree. Print T .

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 3 —



Sample output

The sample output corresponds to the trees given below.

215

192

216

201

205

191

194

213

192

205

191

194

201

213

215

216

215 191216 213

192 194

201

205

The initial binary tree After bubble sortAfter right skewing

205

194 215

213 216192 201

191

After rebalancing

n = 8

205 4 3

192 1 2

215 0 0

216 0 1

201 0 0

194 1 1

191 0 0

213 0 0

+++ Initial tree

--- Preorder listing

205 192 215 216 201 194 191 213

--- Inorder listing

215 192 216 201 205 191 194 213

+++ Tree made skew

--- Preorder listing

215 192 216 201 205 191 194 213

--- Inorder listing

215 192 216 201 205 191 194 213

+++ Tree after sorting

--- Preorder listing

191 192 194 201 205 213 215 216

--- Inorder listing

191 192 194 201 205 213 215 216

+++ Tree after rebalancing

--- Preorder listing

205 194 192 191 201 215 213 216

--- Inorder listing

191 192 194 201 205 213 215 216

— Page 3 of 3 —


