
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION (Mid Semester) SEMESTER (Spring)

Roll Number Section Name

Subject Number C S 2 1 0 0 3 Subject Name Algorithms – I

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the

subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed

by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,

exchange of these items or any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough

work. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the

desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence

from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly

prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not

allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until

the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or

exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and

do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

CS21003 Algorithms–I, Spring 2018–2019

Mid-Semester Test

21–February–2019 NR123/124/321/322/421/422, 02:00pm–04:00pm Maximum marks: 40

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

Questions start from the next page.

1. An array A of n distinct integers resides in a blackbox. At any time, you can read A[i] for 0 6 i 6 n−1. The

only type of modification allowed on A is requesting the blackbox to swap A[i] and A[j] for any two valid

indices i and j in A. Your task is to sort A. You make a copy of A to a local array, and sort your local array

(by any algorithm of your choice). Call this sorted array B. This exercise starts after this. As per the rules,

you cannot copy B back to A. You need to issue a sequence of swap requests to the blackbox in order to

convert A to (a copy of) B. You are required to achieve this in O(n logn) time. Moreover, you are allowed to

make at most O(n) swap requests to the blackbox. Propose an algorithm to solve this problem. (10)

Solution Use a local array pos[0 . . .n−1] such that if A[i] = B[j], store pos[i] = j. Since B is sorted, you can find the j

corresponding to each i in O(logn) time by performing binary search for A[i] in B. The final position of A[i] is

j, so if j 6= i, A[i] must be relocated. This is carried out by swapping A[i] and A[j]. After this, the old A[i] does

not need to be relocated again. But the new A[i] may need to be relocated again.

1. For i = 0,1,2, . . . ,n−1, repeat:

(a) Use binary search to locate the index j of A[i] in B.

(b) Set pos[i] = j.

2. Initialize i = 0.

3. While i < n, repeat:

(a) Let j = pos[i].

(b) If j = i, increment i,

else do:

(i) Swap A[i] and A[j].

(ii) Set pos[i] = pos[j].

(iii) Set pos[j] = j.

Notes

1. This algorithm can work without explicitly using the array pos[].

2. If you have A[i] = B[j] initially, and you store pos[j] = i, this means that the position j in the final A

should be occupied by A[i]. In that case, in Step 3, you run a loop on j. Take i = pos[j]. If i = j, then A[i]
is occupied by the correct element, so do nothing. Otherwise, swap A[i] and A[j]; this will bring A[i] to

its correct position. In both the cases, increment i.

— Page 1 of 6 —

2. Let A = a0a1a2 . . .an−1 be a string of length n. Your task is to express A as a concatenation A = α1α2 . . .αk,

where each substring αi is a palindrome,1 and k is as small as possible. For example, the string acbaabcaca

has two minimum decompositions into three substrings: acbaabca c a, and a cbaabc aca. In this exercise,

you are required to develop a dynamic-programming algorithm to solve this problem. Answer the following

two parts. Your algorithm for each part must run in O(n2) time. Do not use memoization.

(a) Build a two-dimensional table P. For 0 6 i 6 j 6 n−1, the element P[i][j] should store the information

whether the substring A[i . . . j] = aiai+1 . . .a j is a palindrome or not. Clearly mention how P is iteratively

populated, and in which order (that is, in which sequence of choosing the indices i and j). (5)

Solution Every string of length one is a palindrome, so we set P[i][i] = 1 for 0 6 i 6 n−1. For j = i+1, the substring

aia j is a palindrome if and only if ai = a j, so for 0 6 i 6 n− 2, we set P[i][i+ 1] =

{

1 if ai = a j,

0 if ai 6= a j.
Now,

suppose that j − i > 2. Then, A[i . . . j] is a palindrome if and only if ai = a j and A[i+ 1 . . . j − 1] is again a

palindrome. This recursive formulation indicates that for deciding whether a string of length l is a palindrome,

we need to check whether a string of length l − 2 is a palindrome. This, in turn, prescribes that P may be

filled in the diagonal-major order. A couple of other possibilities are: (i) row-major order with descending row

index i (j may be chosen in any order, but the (i+ 1)-st row should be ready for populating the i-th row), and

(ii) column-major order with ascending column index j (i can now be chosen in any order, but we require the

(j−1)-st column be ready for populating the j-th column).

1A palindrome is a string which reads the same forward and backward. Examples: a, cc, denned, racecar, madamimadam.

— Page 2 of 6 —

(b) Using the table P of Part (a), solve the minimum palindrome-decomposition problem for A. (5)

Solution Build two one-dimensional tables S and T , where for j = 0,1,2, . . . ,n− 1, the elements S[j] and T [j] store

the information about a minimum palindromic decomposition of A[0 . . . j] = a0a1a2 . . .a j. More precisely, S[j]
stores the number of strings in a minimum decomposition of A[0 . . . j], whereas T [j] stores the start index of the

last substring in this decomposition. These tables can be populated as follows.

For j = 0,1,2, . . . ,n−1, repeat:

If P[0][j] = 1, then do:

Set S[j] = 1 and T [j] = 0,

else do:

Initialize S[j] = ∞.

For i = 0,1,2, . . . , j−1, repeat:

If P[i+1][j] = 1, then do:

Compute s = S[i]+1.

If s < S[j], update S[j] = s and T [j] = i+1.

After S and T are populated, S[n−1] stores the number K of strings in a minimum palindromic decomposition

of A. The substrings in this decomposition can be computed as follows. In an array U [0 . . .K−1], store the start

indices of the constituent substrings.

Set K = S[n−1], k = K −1, and j = n−1.

While k > 0, repeat:

Set U [k] = T [j] and j = T [j]−1, and decrement k.

For k = 0,1,2, . . . ,K −1, repeat:

Set i =U [k] and j =

{

U [k+1]−1 if k 6 K −2,

n−1 if k = K −1.
Print A[i . . . j].

Note: Greedily choosing the maximum-length palindrome at the beginning or end will not work. Take A =
ababaab. The greedy solution (longest at beginning) is ababa a b, whereas the optimal solution is aba baab.

For the longest-at-end greedy strategy, consider the reverse string: baababa = b a ababa = baab aba. This

example also illustrates that the longest-first-anywhere greedy strategy will not work either.

— Page 3 of 6 —

3. Let T be a binary tree, and v a node in T . A child swap at v is defined as the swapping of the left-child and

the right-child pointers of v. This operation swaps the entire left and right subtrees of v. We are interested

only in the binary-tree structures, so we do not consider, in this context, any data stored in the nodes. Two

binary trees T1 and T2 are called (structurally) isomorphic if T1 can be converted to (a copy of) T2 by a (finite)

sequence of child-swap operations. The following figure shows the effects of four child-swap operations.

All the five trees of the figure are therefore isomorphic to one another.

(a) You are given two binary trees T1 and T2 as input. Assume that the trees are node-disjoint, that is, the

nodes of T1 and T2 are stored in different memory locations. Each node contains only two child pointers (but

no parent pointer). For this exercise, the nodes are not required to store any other item (like a key value).

Assume that T1 and T2 are immutable (read-only), that is, you can neither change the structures of the trees

nor insert new items in the nodes. Propose an efficient algorithm to decide whether T1 and T2 are isomorphic. (5)

Solution The following recursive function accomplishes the task.

int isomorphic (tree T1, tree T2)

{

int LL, LR, RL, RR;

if ((T1 == NULL) && (T2 == NULL)) return 1;

if ((T1 == NULL) || (T2 == NULL)) return 0;

LL = isomorphic(T1->L, T2->L);

LR = isomorphic(T1->L, T2->R);

RL = isomorphic(T1->R, T2->L);

RR = isomorphic(T1->R, T2->R);

if ((LL == 1) && (RR == 1)) return 1;

if ((LR == 1) && (RL == 1)) return 1;

return 0;

}

— Page 4 of 6 —

(b) Deduce the running time of your algorithm of Part (a) in terms of m and n (in the big-O notation), where

m and n are the numbers of nodes in T1 and T2, respectively. (Note: The counts m and n are not supplied as

input to your algorithm. You can anyway compute them in O(m+n) time, and decide NO if you see m 6= n.

But the case m = n does not lead you to an immediate conclusion.) (5)

Solution Denote the running time by T (m,n). Let c denote the time taken by the non-recursive part of the algorithm plus

the overhead associated with making (but not executing) four recursive calls. We prove by induction on m,n
that T (m,n)6 (4mn+1)c. The result holds for m = 0 or n = 0 [induction basis]. If both m,n are positive, we

make four recursive calls, and the running time satisfies the recurrence

T (m,n)6 T (l1, l2)+T (l1,r2)+T (r1, l2)+T (r1,r2)+ c,

where li,ri are the numbers of nodes in the left and right subtrees of Ti (for i = 1,2). We have m = l1 + r1 +1,

n = l2 + r2 +1, and (l1 + r1)+(l2 + r2)> 0. It then inductively follows that

T (m,n) 6 T (l1, l2)+T (l1,r2)+T (r1, l2)+T (r1,r2)+ c

6
[

(4l1l2 +1)+(4l1r2 +1)+(4r1l2 +1)+(4r1r2 +1)
]

c+ c

= 4(l1l2 + l1r2 + r1l2 + r1r2 +1)c+ c

6 4(l1l2 + l1r2 + r1l2 + r1r2 + l1 + r1 + l2 + r2 +1)c+ c

= 4(l1 + r1 +1)(l2 + r2 +1)c+ c

= (4mn+1)c.

Since c is a constant, we conclude that T (m,n) = O(m,n). In particular, if m = n, this running time is O(n2).

Note: It is tempting to express the running time as T (n) = 4T (n/2)+O(1) in the case m = n. This recurrence

has the solution T (n) =O(n2), but this expression stands for the best case and fails to depict the correct behavior

of the algorithm.

— Page 5 of 6 —

4. You are given a string A of length n, consisting of the symbols (and) only. Your task is to find the longest

balanced subsequence (not substring) of A. Here follows an example. The two outputs shown are the same

(you should remove all the spaces in the output).

Input:)())(()(()()))))((((()))((

Output realization 1: ()(()(()())) ((()))

Output realization 2: () (()(()()))((()))

Propose an O(n)-time algorithm to solve this problem using a stack. (10)

Solution By using a stack, we can greedily choose the right parentheses as soon as they match earlier unmatched left

parentheses. We only need to know the indices of the matching left parentheses. We maintain a stack S of the

indices of the left parentheses. We also maintain an array include to mark which symbols from the input string

A are to be included in a maximum balanced subsequence.

1. For i = 0,1,2, . . . ,n−1, initialize include[i] = 0.

2. Initialize a stack S of integers to empty.

3. For i = 0,1,2, . . . ,n−1, repeat:

If A[i] is (, push i to S,

else if S is not empty, do:

Let j be the index at the top of S.

Mark include[i] = include[j] = 1.

Pop from S.

4. Ignore the indices that remain in S after the entire input is read.

5. Write in contiguous memory (output array) those symbols A[i], for which include[i] = 1.

For the example given in the question, the output is generated as follows.

Input:)())(()(()()))))((((()))((

Output: () (()(()())) ((()))

— Page 6 of 6 —

FOR LEFTOVER ANSWERS

— Extra page 7 —

FOR LEFTOVER ANSWERS OR ROUGH WORK

— Extra page 8 —

FOR ROUGH WORK

— Extra page 9 —

FOR ROUGH WORK

— Extra page 10 —

