
CS21003 Algorithms–I, Spring 2018–2019

Class Test 1

12–February–2019 F116/F142, 07:00pm–08:00pm Maximum marks: 20

Roll no: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

1. Consider the following function.

unsigned int f (unsigned int n)

{

unsigned int i = 1, z = 0;

while (i <= sqrt(n)) {

z = z + i;

i = 2 * i;

}

return z;

}

(a) Express the return value f (n) as the big-theta Θ of a simple function of the input n. Prove the bound. (4)

Solution Let 2t 6
√

n < 2t+1. Then, the variable z accumulates the sum z = 1+ 2+ 22 + · · ·+ 2t = 2t+1 − 1. Thus the

return value satisfies
√

n−1 < z 6 2
√

n−1, which is Θ(
√

n).

(b) Analyze the time complexity of the function (in the Θ notation) in terms of its input n. (4)

Solution The loop runs for t + 1 iterations with each iteration taking O(1) time. We have (1
2

log2 n)− 1 < t 6 1
2

log2 n.

Therefore the running time is Θ(logn).

— Page 1 of 3 —

2. A set of n mobile-phone towers serves the entire stretch of a long straight highway in Foobarland. The

Foobarland president finds that there are too many towers. He plans to remove as many towers as possible

without sacrificing the requirement that the entire highway must still be covered. Here is an example of this

situation. The thick lines stand for a set of chosen towers that can serve the total stretch of the highway.

Foobarland Highway

The range of a tower is supplied as an interval [ai,bi] with ai < bi. The highway stretches from L = min
i
(ai)

to R = max
i
(bi). Your task is to find a minimum set of intervals whose union is the entire interval [L,R].

(a) Propose an efficient greedy algorithm to solve this problem. (5)

Solution Let us call an interval [ai,bi] active at a point x ∈ [L,R] if ai 6 x < bi. With this notation, the algorithm can be

stated as follows.

1. Initialize x = L, and S = /0.

2. While x < R, repeat:

(a) Find all the intervals active at x.

(b) Choose an active interval I j = [a j,b j] with the largest right endpoint b j.

(c) Add I j to S, and set x = b j.

3. Return S.

Longest first

Greedy strategies that don’t work

Maximum overlap first

Minimum overlap first

Earliest start/end first

— Page 2 of 3 —

(b) Prove that your algorithm correctly computes a minimum set of towers. (5)

Solution Let GRD be a solution produced by the greedy algorithm, and OPT an optimal solution. We sort both GRD

and OPT individually in the ascending order of the left endpoints of the intervals. Assume that OPT 6= GRD.

Suppose that GRD and OPT match in the first k intervals (for some k > 0), whereas the (k+ 1)-st interval in

OPT is I, and that in GRD is J with J 6= I. See the following figure which also shows the value of x at the time

when the greedy algorithm chooses the interval J.

OPT

GRD . . .

. . .

x

I

J

Let I = [a,b]. If a > x, then the region (x,a) is not covered by OPT (recall that the intervals are sorted with

respect to their left endpoints, so no other following interval in OPT can cover (x,a)). If b 6 x, then the interval

I can be thrown from OPT, and this reduced OPT continues to cover the entire highway [L,R]. Thus, we must

have a 6 x < b, that is, I is an active interval at x. GRD chooses J = [a′,b′] because b′ > b. The region [L,x] is

covered by the first k intervals in both OPT and GRD. Now, if we replace I by J in OPT, the modified collection

still covers [L,R].

Proceeding in this way, we can convert OPT to GRD without ever increasing the number of intervals. We can

therefore conclude that GRD is also an optimal solution.

(c) Deduce a good bound on the running time of your algorithm in the O notation. (2)

Solution Step 1 takes O(1) time. Steps 2(a) and 2(b) require at most O(n) time, whereas Step 2(c) takes O(1) time.

Moreover, the loop of Step 2 can run for at most n iterations. Step 3 takes O(1) time (or O(n) time depending

on the implementation). The overall running time is thus O(n2).

Note: With careful data structuring, this problem seems to be solvable in O(n logn) time. But it is fine if the

students come up with an O(n2)-time algorithm.

— Page 3 of 3 —

FOR ROUGH WORK

