
CS29003 Algorithms Laboratory

Lab Test

Date: 26–March–2019

EVEN PC

Let T be a binary search tree (BST) storing n integer-valued keys ki satisfying 0 < k1 < k2 < k3 < · · ·< kn.

Two consecutive keys in T are called a neighbor pair, that is, T contains n−1 neighbor pairs (ki,ki+1) for

i = 1,2,3, . . . ,n−1. The distance of the neighbors ki and ki+1 is ki+1 − ki. Consider the two problems.

(a) Find the closest neighbor pair in T (with respect to the distance defined above). If multiple neighbor

pairs have the same distance as the closest one, finding any one of these pairs suffices.

(b) If the closest pair is (x,y), apply a sequence of rotations to T until x becomes the left child of y.

Problem (b) is solved if you make T completely left-skew, but this process may require about n rotations.

You need to solve Problem (b) by a restricted number of rotations. Let level(u) denote the level of the node

u in T , that is, the distance of u from the root of T . For example, the root itself is at level 0, its children

are at level 1, the grandchildren of the root are at level 2, and so on. If (x,y) is the closest pair found by

solving Problem (a), you are allowed to make a maximum of |level(x)− level(y)| rotations. Note that the

only operation permitted for solving Problem (b) is rotation (both left and right rotations are allowed). Note

also that you do not need to compute level(x) and level(y) explicitly.

Each node in T should consist of an integer key value and two child pointers. Since rotations are involved,

a node is additionally allowed to have a parent pointer. A node must not contain any other field. Implement

the following parts in order to solve the two problems mentioned above.

Part 1: No black box is provided for constructing T . Write a function insert() to implement the standard BST

insertion algorithm. For inserting a key k to T , first search for k in T . If k is found, do nothing. Otherwise,

the search fails when you follow a NULL pointer. Create a new node storing k, and replace the NULL

pointer you encountered during the search by a pointer to the new node. Adjust the parent pointer of the

new node if your node contains this pointer. Do not perform any type of height balancing. (5)

Part 2: Write a function preorder() to print the preorder listing of the keys stored in T . (3)

Part 3: Write a function findnbr() for finding the closest neighbor pair (x,y). In order to do so, modify the inorder

traversal procedure in T . This traversal prints the keys of T in sorted order. Instead of printing, you should

find the minimum distance between neighbors. Your function should run in O(n) time. You are allowed (but

not forced) to use an external array to store the sorted list of keys of T . (8)

Part 4: Write two functions lrotate() and rrotate() to perform a left or right rotation at a specified node u. Each

function should return a pointer to the new node v that occupies the position of u after the rotation. Your

functions should change the parent pointers of the affected nodes (if you use these pointers). (4)

Part 5: Write a function makechild() to make x the left child of y, where (x,y) is the pair obtained in Part 3. This

function should run in O(|level(x)− level(y)|) time, and achieve its desired goal only by applying rotations

to the nodes of T . Recall that the maximum number of rotations allowed is |level(x)− level(y)|.
(Hint: Here, x is the immediate predecessor of y, and y is the immediate successor of x.) (8)

The main() function and output

• Initialize T to an empty tree. Read n, and n keys from the user. Insert in T the keys using the function

of Part 1. Print the preorder listing of the keys of T after all the n keys are inserted. (2 + 2)

• Call findnbr of Part 3 to locate the closest neighbor pair (x,y) in T . Print the keys at x and y. (2 + 2)

• Call makechild of Part 5 to make x the left child of y. Print how many rotations your function applies

on nodes of T . Print also the two children of y, and finally the preorder listing of the keys in T . (2 + 2)

Submit a single C/C++ source file. Do not use global/static variables.

— Page 1 of 2 —

Sample outputs

--

n = 40

Keys to insert:

2076 1228 2585 1905 1823 2372 1348 2255 3209 2940 675 493

1434 2427 3148 328 194 385 1639 2805 1089 805 258 3300

3624 899 3014 2502 636 1526 2031 2128 1688 2178 3471 3367

1788 3512 2683 1045

+++ Preorder traversal of initial tree

2076 1228 675 493 328 194 258 385 636 1089 805 899

1045 1905 1823 1348 1434 1639 1526 1688 1788 2031 2585 2372

2255 2128 2178 2427 2502 3209 2940 2805 2683 3148 3014 3300

3624 3471 3367 3512

+++ Finding closest neighbor

x = 1788, y = 1823, gap = 35

+++ Bringing neighboring key to child position

Number of rotations = 4

y = 1823, y -> L = 1788, y -> R = NULL

+++ Preorder traversal of final tree

2076 1228 675 493 328 194 258 385 636 1089 805 899

1045 1905 1823 1788 1688 1639 1434 1348 1526 2031 2585 2372

2255 2128 2178 2427 2502 3209 2940 2805 2683 3148 3014 3300

3624 3471 3367 3512

--

n = 40

Keys to insert:

1569 2477 2335 1836 1672 625 2148 1022 1720 414 725 1799

2374 1448 1173 1578 1285 2275 1049 2883 889 2070 1953 332

512 447 276 257 1887 2617 1361 792 602 2589 1189 2660

951 2768 2385 153

+++ Preorder traversal of initial tree

1569 625 414 332 276 257 153 512 447 602 1022 725

889 792 951 1448 1173 1049 1285 1189 1361 2477 2335 1836

1672 1578 1720 1799 2148 2070 1953 1887 2275 2374 2385 2883

2617 2589 2660 2768

+++ Finding closest neighbor

x = 1569, y = 1578, gap = 9

+++ Bringing neighboring key to child position

Number of rotations = 5

y = 1578, y -> L = 1569, y -> R = 1672

+++ Preorder traversal of final tree

1578 1569 625 414 332 276 257 153 512 447 602 1022

725 889 792 951 1448 1173 1049 1285 1189 1361 1672 1836

1720 1799 2335 2148 2070 1953 1887 2275 2477 2374 2385 2883

2617 2589 2660 2768

--

— Page 2 of 2 —

CS29003 Algorithms Laboratory

Lab Test

Date: 26–March–2019

ODD PC

Let T be a binary search tree (BST) storing n integer-valued keys ki satisfying 0 < k1 < k2 < k3 < · · ·< kn.

Two consecutive keys in T are called a neighbor pair, that is, T contains n−1 neighbor pairs (ki,ki+1) for

i = 1,2,3, . . . ,n−1. The distance of the neighbors ki and ki+1 is ki+1 − ki. Consider the two problems.

(a) Find the farthest neighbor pair in T (with respect to the distance defined above). If multiple neighbor

pairs have the same distance as the farthest one, finding any one of these pairs suffices.

(b) If the farthest pair is (x,y), apply a sequence of rotations to T until y becomes the right child of x.

Problem (b) is solved if you make T completely right-skew, but this process may require about n rotations.

You need to solve Problem (b) by a restricted number of rotations. Let level(u) denote the level of the node

u in T , that is, the distance of u from the root of T . For example, the root itself is at level 0, its children

are at level 1, the grandchildren of the root are at level 2, and so on. If (x,y) is the farthest pair found by

solving Problem (a), you are allowed to make a maximum of |level(x)− level(y)| rotations. Note that the

only operation permitted for solving Problem (b) is rotation (both left and right rotations are allowed). Note

also that you do not need to compute level(x) and level(y) explicitly.

Each node in T should consist of an integer key value and two child pointers. Since rotations are involved,

a node is additionally allowed to have a parent pointer. A node must not contain any other field. Implement

the following parts in order to solve the two problems mentioned above.

Part 1: No black box is provided for constructing T . Write a function insert() to implement the standard BST

insertion algorithm. For inserting a key k to T , first search for k in T . If k is found, do nothing. Otherwise,

the search fails when you follow a NULL pointer. Create a new node storing k, and replace the NULL

pointer you encountered during the search by a pointer to the new node. Adjust the parent pointer of the

new node if your node contains this pointer. Do not perform any type of height balancing. (5)

Part 2: Write a function preorder() to print the preorder listing of the keys stored in T . (3)

Part 3: Write a function findnbr() for finding the farthest neighbor pair (x,y). In order to do so, modify the inorder

traversal procedure in T . This traversal prints the keys of T in sorted order. Instead of printing, you should

find the maximum distance between neighbors. Your function should run in O(n) time. You are allowed

(but not forced) to use an external array to store the sorted list of keys of T . (8)

Part 4: Write two functions lrotate() and rrotate() to perform a left or right rotation at a specified node u. Each

function should return a pointer to the new node v that occupies the position of u after the rotation. Your

functions should change the parent pointers of the affected nodes (if you use these pointers). (4)

Part 5: Write a function makechild() to make y the right child of x, where (x,y) is the pair obtained in Part 3. This

function should run in O(|level(x)− level(y)|) time, and achieve its desired goal only by applying rotations

to the nodes of T . Recall that the maximum number of rotations allowed is |level(x)− level(y)|.
(Hint: Here, x is the immediate predecessor of y, and y is the immediate successor of x.) (8)

The main() function and output

• Initialize T to an empty tree. Read n, and n keys from the user. Insert in T the keys using the function

of Part 1. Print the preorder listing of the keys of T after all the n keys are inserted. (2 + 2)

• Call findnbr of Part 3 to locate the farthest neighbor pair (x,y) in T . Print the keys at x and y. (2 + 2)

• Call makechild of Part 5 to make y the right child of x. Print how many rotations your function applies

on nodes of T . Print also the two children of x, and finally the preorder listing of the keys in T . (2 + 2)

Submit a single C/C++ source file. Do not use global/static variables.

— Page 1 of 2 —

Sample outputs

--

n = 40

Keys to insert:

1687 1365 3905 1793 1547 861 3755 2307 448 1622 538 2400

719 1211 2539 350 159 2884 601 2164 2790 2667 3416 1945

3489 801 1080 2994 204 2251 1279 3232 2079 3601 1492 3705

667 3335 3115 937

+++ Preorder traversal of initial tree

1687 1365 861 448 350 159 204 538 719 601 667 801

1211 1080 937 1279 1547 1492 1622 3905 1793 3755 2307 2164

1945 2079 2251 2400 2539 2884 2790 2667 3416 2994 3232 3115

3335 3489 3601 3705

+++ Finding farthest neighbor

x = 1793, y = 1945, gap = 152

+++ Bringing neighboring key to child position

Number of rotations = 3

x = 1793, x -> L = NULL, x -> R = 1945

+++ Preorder traversal of final tree

1687 1365 861 448 350 159 204 538 719 601 667 801

1211 1080 937 1279 1547 1492 1622 3905 1793 1945 2164 2079

2307 2251 3755 2400 2539 2884 2790 2667 3416 2994 3232 3115

3335 3489 3601 3705

--

n = 40

Keys to insert:

2980 1612 464 913 866 3284 1574 1421 1126 1275 1302 528

1892 3206 1705 3138 3250 658 1158 1994 2104 766 3034 2279

2663 2588 1341 1772 119 2361 2840 616 2493 2733 1075 329

1446 243 2217 1018

+++ Preorder traversal of initial tree

2980 1612 464 119 329 243 913 866 528 658 616 766

1574 1421 1126 1075 1018 1275 1158 1302 1341 1446 1892 1705

1772 1994 2104 2279 2217 2663 2588 2361 2493 2840 2733 3284

3206 3138 3034 3250

+++ Finding farthest neighbor

x = 2840, y = 2980, gap = 140

+++ Bringing neighboring key to child position

Number of rotations = 7

x = 2840, x -> L = 2663, x -> R = 2980

+++ Preorder traversal of final tree

2840 2663 2279 2104 1994 1892 1612 464 119 329 243 913

866 528 658 616 766 1574 1421 1126 1075 1018 1275 1158

1302 1341 1446 1705 1772 2217 2588 2361 2493 2733 2980 3284

3206 3138 3034 3250

--

— Page 2 of 2 —

