
CS29003 Algorithms Laboratory

Assignment No: 9

Last date of submission: 02–April–2019

Graph Traversal

You are given a two-dimensional m×n grid of square cells. Two cells are adjacent if they share a common

horizontal or vertical edge (not just a corner). A wall exists between every adjacent pair of cells. You

generate a bhulbhulaiya out of the grid by randomly removing some of the walls. Then, you are given two

distinct cells in the bhulbhulaiya. Your task is to find out a path to join the given cells. Your bhulbhulaiya

should be such that between every pair of (distinct) cells, there exists a unique path, that is, the path-finding

problem in the bhulbhulaiya is always uniquely solvable. The following figure gives an example of a 7×8

bhulbhulaiya and the path from the source cell S = (4,5) to the destination (target) cell T = (4,4).

Both these problems (bhulbhulaiya generation and path finding) can be solved using suitable graph-traversal

algorithms. Consider an undirected graph G = (V,E), where V is the set of mn cells of the grid. A vertex

(i, j) is adjacent only to the four cells (i± 1, j ± 1) (a cell at an edge or at a corner has less than four

neighbors). The edge set E of the graph contains < 2mn cells (the exact size is |E|= (m−1)n+m(n−1) =
2mn−m− n, because the horizontal walls form an (m− 1)× n array, whereas the vertical walls form an

m× (n−1) array). A BFS/DFS traversal on G runs in O(|V |+ |E|) = O(mn) time. For solving the problems

stated above, you do not need the graph G explicitly (that is, in the adjacency-matrix or in the adjacency-list

format). Given any vertex (i, j) ∈V , its neighbors (there are at most four of them) can be easily calculated.

Part 1: Initialize a bhulbhulaiya

A bhulbhulaiya consists of the following items.

• The row-dimension m.

• The column-dimension n.

• An (m− 1)× n array H of horizontal walls, where H[i][j] stores the information whether the wall

between the cells (i, j) and (i+1, j) is present in the bhulbhulaiya or removed from the bhulbhulaiya.

• An m× (n− 1) array V with V [i][j] storing the information (presence/absence) of the vertical wall

between the cells (i, j) and (i, j+1).

• An m×n array P of parent pointers, where P[u][v] is meant to store the pair (i, j) of indices if (u,v) is

a child of (i, j) in the DFS tree to be created in Part 3.

Define a suitable structure to store the above fields pertaining to a bhulbhulaiya. Given m,n, one can initialize

a bhulbhulaiya by creating the three arrays H,V,P. To start with, all walls are kept, and all parents are stored

as an invalid index like (−1,−1). Write a function initbhul(m,n) to create and return an initialized grid.

Part 2: Print a bhulbhulaiya (and a path in it)

Write a function prnbhul(M) to print a bhulbhulaiya in the format illustrated in the sample output. An

existent wall is shown as a horizontal/vertical line, and a removed wall as blank. In Parts 1 and 3, each cell

is shown as empty. In Part 4, you need to show a path between the source and target cells S and T . So this

print function would take an “optional” second argument which specifies a path in the bhulbhulaiya.

— Page 1 of 3 —

Part 3: Generate a random bhulbhulaiya

Make a random DFS traversal in G in order to create a uniquely connected bhulbhulaiya from an initialized

m×n grid. Notice that G is never explicitly supplied to you. It will remain only in your head. You need it

only for finding the neighbors of a cell.

Write a recursive DFS() function to traverse G in the depth-first fashion. If you are at vertex (i, j), locate

its unvisited neighbors in a random sequence. For each unvisited neighbor (u,v) of (i, j), a recursive call

is made. You should remove the wall between (i, j) and (u,v) before this recursive call. Moreover, (u,v)
becomes a child of (i, j) in the DFS tree, so set the parent pointer P[u][v] to the pair (i, j).

Write a function genbhul(B) to create a random bhulbhulaiya in B (assumed initialized). This function

chooses a random cell R = (r,s) to start the DFS traversal. It makes the outermost call of the recursive DFS

function on this vertex R (this becomes the root of the DFS tree).

Notice that for a proper running of the DFS traversal, you need to appropriately manage a visited array

which in this case is two-dimensional of size m×n.

Part 4: Find paths in the bhulbhulaiya

Assume that you have generated a uniquely connected m×n bhulbhulaiya using the DFS traversal of Part 3.

Randomly choose two different cells S = (u,v) (the king starts at the source) and T = (x,y) (the queen hides

at the target). There is a unique path in the bhulbhulaiya, that connects S and T . This path can be obtained

by running a second traversal (DFS/BFS) from S on the DFS tree consisting of the removed walls. You

instead follow a different approach.

Following the parent pointers stored in Part 3, generate the unique path from S to the root R of the DFS tree.

Likewise, obtain the unique path from T to R. Do some cut and paste on these two paths in order to obtain

the desired S-T path in the bhulbhulaiya. Write a function findrani to implement this idea.

The main() function

• Read m and n from the user.

• Initialize (Part 1) and print (Part 2) an m×n bhulbhulaiya B (showing all the walls).

• Call genbhul on B (Part 3) to generate a random uniquely connected bhulbhulaiya in B. Print the

bhulbhulaiya (with some of the walls removed).

• Generate two distinct cells S and T . Find the unique S-T path in B (Part 4). Print the bhulbhulaiya

along with the discovered path.

Note: By adding the line

srand((unsigned int)time(NULL));

at the beginning of your main function, you can generate different bhulbhulaiyas in different runs of your

program.

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 3 —

Sample output

m = 10

n = 20

+++ Initial bhulbhulaiya

+---+

| |

+---+

| |

+---+

| |

+---+

| |

+---+

| |

+---+

| |

+---+

| |

+---+

| |

+---+

| |

+---+

| |

+---+

+++ Random bhulbhulaiya generated

+---+

| | | |

+ +---+---+---+ + +---+---+---+---+---+ + +---+---+---+---+---+---+ +

| | | | | | | | | | |

+ +---+ + +---+---+---+ + + + +---+ + + +---+---+ + + +

| | | | | | | | | | | |

+---+ + +---+---+---+ +---+---+ +---+---+---+ +---+ + +---+---+ +

| | | | | | | |

+ +---+ + + +---+---+---+ + +---+---+---+---+ + +---+---+---+ +

| | | | | | | | | | | |

+ + + + +---+---+ + +---+---+ + +---+---+---+ +---+---+ + +

| | | | | | | | | | | |

+ + +---+---+---+ +---+ + + +---+ +---+ +---+---+ + +---+ +

| | | | | | | | | |

+ + +---+ + + +---+---+---+ +---+---+ +---+---+---+ + +---+ +

| | | | | | | | | | | | |

+ + + +---+ +---+ + + +---+ +---+---+---+ + +---+---+ + +

| | | | | | | | | | | |

+ +---+ + +---+ +---+---+---+---+---+---+ + + +---+---+---+---+ +

| | | | |

+---+

+++ Path from S = (1,9) to T = (9,14)

+---+

| x x x x x | x x x x x x x | x x x x x x x x |

+ +---+---+---+ + +---+---+---+---+---+ + +---+---+---+---+---+---+ +

| x | x x | x x | | S | x x | x | | x x x x | x |

+ +---+ + +---+---+---+ + + + +---+ + + +---+---+ + + +

| x x | x | x x x x | | x | x x x | | x x | x x | | x |

+---+ + +---+---+---+ +---+---+ +---+---+---+ +---+ + +---+---+ +

| x x | x | x x | x x x | x | x | x x x x |

+ +---+ + + +---+---+---+ + +---+---+---+---+ + +---+---+---+ +

| x | x | x | x x x | | x x | | | x | | |

+ + + + +---+---+ + +---+---+ + +---+---+---+ +---+---+ + +

| x | | x x | x x | | | | x x x | | | |

+ + +---+---+---+ +---+ + + +---+ +---+ +---+---+ + +---+ +

| x | | x x | x | | | x x | | |

+ + +---+ + + +---+---+---+ +---+---+ +---+---+---+ + +---+ +

| x | | x x | x | x x | x x | | x x x | | | | |

+ + + +---+ +---+ + + +---+ +---+---+---+ + +---+---+ + +

| x | | x | | x x | x x | x x x | x x | | | |

+ +---+ + +---+ +---+---+---+---+---+---+ + + +---+---+---+---+ +

| x x x | x x x x x x x x | x T | |

+---+

— Page 3 of 3 —

