
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION (Mid Semester) SEMESTER (Spring)

Roll Number Section Name

Subject Number C S 2 1 0 0 3 Subject Name Algorithms – I

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the

subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed

by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,

exchange of these items or any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough

work. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the

desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence

from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly

prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not

allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until

the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or

exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and

do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

CS21003 Algorithms–I, Spring 2017–2018

Mid-Semester Test

22–February–2018 V4,NR121/122/221/322/422, 02:00pm–04:00pm Maximum marks: 40

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

1. Complete binary trees (heaps) have contiguous

representations where the indices of the child

nodes of a node at a given index can be

obtained by easily computable formulas (the

children of the node at index i are at indices

2i and 2i+ 1 under one-based indexing). The

parent representations of arbitrary rooted trees

are also contiguous. General binary trees can

also have contiguous representations. Now,

the indices of the child nodes cannot be

computed by well-specified formulas, so we

need to store the two indices against every

node. The adjacent figure demonstrates this

idea. The tree is specified by an array of

triples (key, lidx,ridx), where key is the key

value stored in a node, and lidx and ridx are

the indices of the array cells storing its left

and right children. Do not assume any specific

storage ordering (like level-by-level) of the

node triples in the array. Externally remember

the array index storing the root.

. . .

2

3

5

23

21

16

815

7

7

11
0

1

2

3

4

5

6

7

8

9

10

8 9 107643210

11 7 7 15 21 16 23 28 3 5

9

10

8

3

7 0

6

2

1

4

5

− −

− −

− −

− −

− − −

−

Indices of

nodes in array

In the above example, the root is stored at index 5. Its key is 16, and its two children are at indices 3 and 7.

The node at index 0 stores key 11, has no left child, and has a right child stored at index 9. The node stored

at index 1 is a leaf. The non-existence of a child is specified by a special marker (shown as – in the figure,

and can be the invalid index −1). In this representation, we do not store the index of the parent of a node.

(a) Propose an algorithm that, given a binary tree represented as an array of triples and the index of the

root, computes and returns the height of the tree. Mention the running time of your algorithm. (4+1)

Solution The following recursive algorithm computes the height. The outermost call should pass the index of the root as

nodeidx.

int height (triple T[], int nodeidx)

{

int lht, rht;

if (nodeidx == INVALID) return -1;

lht = height(T, T[nodeidx].lidx);

rht = height(T, T[nodeidx].ridx);

return 1 + max(lht,rht);

}

The running time is O(n), where n is the number of nodes in the tree.

(b) The ancestors of a node v in a binary tree are defined as: Ancestor(0)(v) = v, and Ancestor(k)(v) =
Parent(Ancestor(k−1)(v)) for k > 1. The parent of the root is assumed to be the root itself. Write a function

that, given a binary tree represented as an array of triples, the index of the root, and the index of an arbitrary

node v in the array of triples, prints the keys of all the ancestors of v in the tree. For example, in the tree

given on the earlier page, the ancestors of the node at index 2 have the key values 7,2,15,16. Mention the

running time of your algorithm. (4+1)

Solution We make a traversal of the tree. Only the ancestors of v print their key values. The return value (Boolean)

indicates whether the current node is an ancestor of v. The outermost call should pass the index of the root as

nodeidx.

int printancestors (triple T[], int vidx, int nodeidx)

{

int lresp, rresp;

if (nodeidx == INVALID) return 0;

if (nodeidx == vidx) {

print(T[nodeidx].key);

return 1;

}

lresp = printancestors(T, vidx, T[nodeidx].lidx);

rresp = printancestors(T, vidx, T[nodeidx].ridx);

if ((lresp == 0) && (rresp == 0)) return 0;

print(T[nodeidx].key);

return 1;

}

The running time is again O(n) (in the worst case), where n is the number of nodes in the tree.

— Page 2 of 5 —

2. Heaps introduced in the class are called binary

heaps. Ternary heaps are realized by complete

ternary trees where each node can have three

children: left, mid, and right. All levels except

perhaps the last must be full. Leaves appear

only in the last two levels. Also, the leaves at

the last level must be to the left of the empty

positions. Finally, the key stored at any node

must not be smaller than the keys stored in

its children. The adjacent figure illustrates a

ternary heap and its contiguous representation.

25

2416 7

7 527710 9

8

20

5

1

25 16 24 7 10 7 7 20 9 1 7 2 5 5 8

Propose an algorithm to convert an array H of integers of size n to a ternary heap in the contiguous

representation. More precisely, write the heapify and makeheap functions for a ternary heap. (7+3)

Solution Let us use zero-based indexing. The three children of the node at index i are at indices 3i+1, 3i+2 and 3i+3.

The parent of the node at index i is at index ⌊(i−1)/3⌋.

void heapify (int H[], int n, int i)

{

int lidx, midx, ridx, maxidx, t;

while (1) {

lidx = 3*i+1; midx = 3*i+2; ridx = 3*i+3;

if (lidx >= n) break;

if (midx >= n) maxidx = lidx;

else if (ridx >= n) maxidx = (H[lidx] >= H[midx]) ? lidx : midx;

else {

maxidx = lidx;

if (H[midx] > H[maxidx]) maxidx = midx;

if (H[ridx] > H[maxidx]) maxidx = ridx;

}

if (H[i] >= H[maxidx]) break;

t = H[i]; H[i] = H[maxidx]; H[maxidx] = t;

i = maxidx;

}

}

void makeheap (int H[], int n)

{

int i;

for (i=(n-2)/3; i>=0; --i)

heapify(H,n,i);

}

— Page 3 of 5 —

3. The Fibonacci numbers are defined as F0 = 0, F1 = 1, and Fn = Fn−1 +Fn−2 for n > 2. Let M =

(

0 1

1 1

)

.

(a) Prove that

(

Fn

Fn+1

)

= Mn

(

F0

F1

)

for all n > 0. (Remark: M0 is the identity matrix I2 =

(

1 0

0 1

)

.) (5)

Solution [By induction on n] The result is obvious for n = 0. So assume that the result holds for some n > 0. But then,

Mn+1

(

F0

F1

)

= M×Mn

(

F0

F1

)

= M

(

Fn

Fn+1

)

=

(

Fn+1

Fn +Fn+1

)

=

(

Fn+1

Fn+2

)

.

(b) Propose an O(logn)-time divide-and-conquer algorithm for computing Fn using the formula of Part (a).

Justify that your algorithm runs in O(logn) time. (3+2)

Solution First, notice that two 2× 2 matrices can be multiplied in O(1) time. Moreover, a 2× 2 matrix and a two-

dimensional vector can be multiplied again in O(1) time. Therefore it suffices to compute Mn (or Mn−1 which

also contains Fn if n > 0) in O(logn) time. The following recursive algorithm computes Mn.

1. If n = 0, return I2.

2. If n = 1, return M.

3. Let m = ⌊n/2⌋.

4. Recursively compute N = Mm, and set P = N2.

5. If n = 2m+1, set P = PM.

6. Return P.

We have T (n) = T (⌊n/2⌋)+Θ(1). Since log2 1 = 0, the master theorem of divide-and-conquer recurrences

implies T (n) = Θ(logn).

— Page 4 of 5 —

4. You have n jobs, each requiring one unit of time. At any point of time, you can do only one job. If you start

a job, you must finish it before you start another job. For each i, there is a deadline ti ∈ {0,1,2, . . . ,n− 1}
associated with the i-th job. If the job is started at a time 6 ti, you get a profit of pi (a positive integer).

If the job is started at a time > ti, you get no profit at all. This means that if you cannot schedule a job

on or before its start deadline, you do not schedule this job at all. Notice that the deadlines ti need not be

distinct from one another. Your task is to select and schedule a subset of the jobs in such a way that your

total profit is maximized. Propose an O(n logn)-time greedy algorithm to solve this problem. Analyze that

your algorithm has the given running time. (8+2)

Solution We first sort the deadline array in descending order. We use a max-priority queue Q of maximum size n. The

priority queue stores (ti, pi), and its heap ordering is based on the profits (the second component). The steps of

the algorithm are given below.

1. Sort the array of deadlines by an optimal sorting algorithm.

2. Initialize a max-priority queue Q to empty.

3. For time = n−1,n−2, . . . ,2,1,0, repeat:

(a) March through the sorted array of deadlines, and insert in Q all (ti, pi) with ti = time.

(b) If Q is non-empty, schedule the job at the root of Q, and then delete this job (deletemax) from Q.

The correctness of this greedy approach is straightforward to prove.

Step 1 can be done in O(n logn) time, for instance, if we use merge sort or heap sort. Step 2 takes O(1) time.

Since T is sorted in the descending order, the march in Step 3(a) is only a forward march, and n pairs are inserted

in Q in a total of O(n logn) time. Finally, each run of Step 3(b) requires O(logn) time (time for deletemax). So

the overall running time of this algorithm is O(n logn).

Remarks: The earliest-deadline-first greedy strategy need not work. Consider the following example with

n = 3. Job 0 has the earliest deadline. If we schedule it at time = 0, we can schedule either Job 1 or Job 2 at

time = 1 (and no job at time = 2). This gives a maximum profit of 2+ 6 = 8. A better strategy is to schedule

Jobs 1 and 2 at time = 0,1 (in any order), leading to a profit of 6+5 = 11.

i 0 1 2

ti 0 1 1

pi 2 6 5

The maximum-profit-first greedy strategy too may fail to work as illustrated by the following example with

n = 3. This strategy advocates scheduling Job 0 at time = 0. But then, we can schedule neither Job 1 nor

Job 2. Thus the profit is only 5. A better strategy is to schedule Job 1 at time = 0 and then Job 0 at time = 1 or

time = 2. The profit is now 5+3 = 8,

i 0 1 2

ti 2 0 0

pi 5 3 2

— Page 5 of 5 —

FOR LEFTOVER ANSWERS

6

FOR LEFTOVER ANSWERS OR ROUGH WORK

7

FOR ROUGH WORK

8

