CS21003 Algorithms-I, Spring 2017-2018

Class Test 2

13-April-2018

CSE 107/108/119/120, 07:00pm-08:00pm

Maximum marks: 20

Roll no: _____ Name: __

Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions. If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

- 1. You make a DFS/BFS traversal in a connected undirected graph G = (V, E). For $v \in V$, let level(v) denote the level of v in the DFS/BFS tree T corresponding to your traversal (the root is at level 0, its children are at level 1, the grandchildren of the root are at level 2, and so on). Let $(u, v) \in E$ be a non-tree edge (that is, an edge of G, not belonging to the DFS/BFS tree T).
 - (a) If the traversal was a DFS traversal, prove that |level(u) level(v)| > 1.

Solution Here, (u, v) is a backward/forward edge. Without loss of generality, assume that $level(u) \leq level(v)$, so u is an ancestor of v. If level(u) = level(v), then u = v. If level(u) = level(v) - 1, then u is the parent of v in T, that is, (u, v) is an edge of T. So we must have $level(u) \leq level(v) - 2$.

(b) If the traversal was a BFS traversal, prove that $|level(u) - level(v)| \leq 1$.

(5)

(5)

Solution BFS traversal produces shortest distances from the root—call the root r. In particular, for any vertex w, level(w) is the shortest r, w distance (where distances are measured by the numbers of edges on paths). Suppose that $level(v) \ge level(u) + 2$. Now, (u, v) is a cross edge. The shortest r, v distance is level(v). However, the r, u-path in T (which is of length level(u)) followed by the cross edge (u, v) gives an r, v-path of length $level(u) + 1 \le level(v) - 1 < level(v)$, a contradiction.

- 2. Recall that an undirected graph G = (V, E) is called bipartite if its vertex set V can be partitioned into two mutually disjoint independent sets V_1 and V_2 (an independent set in a graph is a subset S of vertices such that no two vertices of S share an edge). Likewise, we call G tripartite if its vertex set V can be partitioned into three mutually disjoint independent sets V_1, V_2, V_3 . The following figure illustrates a tripartite graph.
 - (a) Argue that a tripartite graph can have cycles of any length ≥ 3 . (5)

Solution Let us name the vertices of V_1 as u_1, u_2, u_3, \ldots , those of V_2 as v_1, v_2, v_3, \ldots , and those of V_3 as w_1, w_2, w_3, \ldots . We show that a cycle of any length $l \ge 3$ is possible in *G*.

Solution 1

Case 1: $l = 2k, k \ge 2$, is even. In this case, we can use only two parts to form a cycle as in bipartite graphs: $(u_1, v_1, u_2, v_2, \dots, u_k, v_k)$.

Case 2: l = 2k + 1, $k \ge 1$, is odd. Now, we need to involve the third part. One possibility of a cycle of length 2k + 1 is $(u_1, v_1, u_2, v_2, \dots, u_{k-1}, v_k, u_k, v_k, w_1)$.

Solution 2

Case 1: $l = 3k, k \ge 1$. $(u_1, v_1, w_1, u_2, v_2, w_2, \dots, u_k, v_k, w_k)$ can be a cycle in *G*. Case 2: $l = 3k + 1, k \ge 1$. $(u_1, v_1, w_1, u_2, v_2, w_2, \dots, u_{k-1}, v_{k-1}, w_{k-1}, u_k, v_k, u_{k+1}, v_{k+1})$. Case 3: $l = 3k + 2, k \ge 1$. $(u_1, v_1, w_1, u_2, v_2, w_2, \dots, u_k, v_k, w_k, u_{k+1}, v_{k+1})$.

Solution 3: Induction on *l*

[l = 3] Consider a cycle of the form (u_1, v_1, w_1) .

[l > 3] Let $(x_1, x_2, ..., x_{l-1})$ be a cycle of length l-1 in *G*. Without loss of generality, we can take $x_1 \in V_1$ and $x_{l-1} \in V_2$ (notice that x_{l-1} cannot be in V_1 which is an independent set). We can *extend* the given cycle to the cycle $(x_1, x_2, ..., x_{l-1}, x_l)$ of length l by including a *new* vertex x_l from V_3 .

(b) Let C_1, C_2, C_3 be three colors. *G* is called 3-colorable if we can assign these colors to the vertices so that no two adjacent vertices receive the same color. Prove that *G* is tripartite if and only if *G* is 3-colorable. (5)

Solution $[\Rightarrow]$ Let V_1, V_2, V_3 be a tripartition of G. For each i = 1, 2, 3, color all the vertices of V_i by C_i . Since each V_i is an independent set, this coloring is proper.

[\Leftarrow] Consider any proper 3-coloring of *G* by the three colors C_1, C_2, C_3 . For each i = 1, 2, 3, let V_i denote the set of vertices that receive the color C_i . Since each vertex gets a unique color, V_1, V_2, V_3 are mutually disjoint, and $V_1 \cup V_2 \cup V_3 = V$. Moreover, since the 3-coloring was proper, each of V_1, V_2, V_3 must be an independent set.

Remark: Part (b) is a first step to conclude that a polynomial-time algorithm to check whether a graph is tripartite cannot perhaps exist.