
CS29003 Algorithms Laboratory

LAB TEST: EVEN PC

Last date of submission: 27–March–2018

Shunyajit is playing a video game. He enters an n× n mesh of tunnels at (0,0), and the exit is at the point

(n− 1,n− 1). At every point of time, Shunyajit can move one unit right or one unit down through the

mesh. That is, if he is at location (i, j) of the mesh, then his next position can be either (i, j+1) or (i+1, j)
(unless he is at one of the boundaries). The following figure demonstrates an allowed sequence of moves of

Shunyajit in an 8×8 mesh of tunnels (see the thick path).

0

1

2

3

4

5

6

7

0 21 3 4 5 6 7

i

j

Shunyajit starts at (0,0) with energy level 1 (a positive floating-point number). While crossing a vertical

segment of the mesh, Shunyajit has to fight with demons, and his energy level drops. The factor by which

the energy level changes is supplied in an (n− 1)× n matrix EF (exhaustion factor). That is, if Shunyajit

moves from (i, j) to (i+1, j), his energy level is multiplied by EF [i][j].

The horizontal segments of the mesh do not contain any demons. Some (not all) of the horizontal segments

contain magic potions. If Shunyajit drinks the potion at a horizontal segment, his energy level increases

by 25% (that is, is multiplied by 1.25). Notice that the energy level can grow to values larger than 1. The

presence/absence of the magic potion in the horizontal segments is presented by an n× (n− 1) matrix PP

(potion position) with entries from {0,1}. If PP[i][j] = 0, then the horizontal segment (i, j) to (i, j+1) does

not contain the potion. If PP[i][j] = 1, this segment contains the potion.

The goal of Shunyajit is to exit the mesh at (n−1,n−1) with energy level as high as possible.

Part 1: Implement a greedy strategy for Shunyajit. Suppose that at some point of time, Shunyajit is at

position (i, j) 6= (n − 1,n − 1). Consider the three cases. First, if i = n − 1, then a vertical movement

cannot be made, so the next position of Shunyajit must be (i, j+1). Second, if j = n−1, then a horizontal

movement is not possible, so Shunyajit must move to (i+1, j). Finally, consider the case that i < n−1 and

j < n− 1. Shunyajit makes a greedy decision for moving to the (i+ 1)-st row. He considers all values of

k ∈ { j, j+1, . . . ,n−1}. For each k, he moves from (i, j) to (i,k) horizontally (drinking all available potions),

and then makes the vertical movement from (i,k) to (i+ 1,k) (after fighting the demons in that segment).

Shunyajit chooses that k in the above range, for which his energy level at (i+ 1,k) is maximized. Write

a function greedy(EF,PP,n) realizing this greedy strategy. The function should print the movements of

Shunyajit in each of the above three cases, and his energy level after the movements following each decision.

Part 2: The greedy strategy of Part 1 is not guaranteed to produce an optimal solution. Use dynamic

programming to generate an optimal solution. Build an n×n table T such that T [i][j] is meant to store the

maximum possible energy level of Shunyajit when he is at (i, j). If both i and j are positive, then T [i][j] can

be related to T [i−1][j] and T [i][j−1] easily by the rules of the game. Handle the boundary conditions (i = 0

or j = 0) appropriately. Write a function DP(EF,PP,n) to implement this dynamic-programming algorithm.

— Page 1 of 2 —

The function should return (or print) the maximum energy level with which Shunyajit can leave the mesh at

position (n−1,n−1). The running time of your algorithm should be O(n2). Do not use memoization.

Part 3: Copy the function DP to a function DPsol. The purpose of this function is to print an optimal

path that Shunyajit should follow in the mesh. The function should print all of the horizontal and vertical

movements of Shunyajit, and his energy level after each movement. The running time of DPsol should

again be O(n2).

The main() function

• Read n from the user.

• Read the two matrices EF and PP from the user in row-major order (that is, row by row, and in each

row, from left to right). Notice again that EF is an (n−1)×n matrix of floating-point numbers in the

open interval (0,1), whereas PP is an n× (n−1) matrix with entries from {0,1}.

• Call greedy to print the movements and the final energy level.

• Call DP to obtain and print the optimal final energy level.

• Call DPsol to print an optimal path in the mesh.

Sample output

n = 5

+++ Exhausting factors:

0.8 0.8 0.9 0.8 0.9

0.7 0.8 0.7 0.5 0.6

0.7 0.9 0.7 0.8 0.8

0.7 0.7 0.7 0.8 0.9

+++ Potion positions:

1 0 0 0

0 1 1 0

1 1 1 1

1 0 0 1

0 0 0 0

+++ Part 1: Greedy algorithm

At (0,0) with energy level = 1.000000

At (1,2) with energy level = 1.125000

At (2,4) with energy level = 0.843750

At (3,4) with energy level = 0.675000

At (4,4) with energy level = 0.607500

--- Energy level during exit = 0.607500

+++ Part 2: Dynamic-programming algorithm

--- Energy level during exit = 1.125000

+++ Part 3: Dynamic-programming algorithm with solution

At (0,0) with energy level = 1.000000

At (0,1) with energy level = 1.250000

At (1,1) with energy level = 1.000000

At (2,1) with energy level = 0.800000

At (2,2) with energy level = 1.000000

At (2,3) with energy level = 1.250000

At (2,4) with energy level = 1.562500

At (3,4) with energy level = 1.250000

At (4,4) with energy level = 1.125000

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

CS29003 Algorithms Laboratory

LAB TEST: ODD PC

Last date of submission: 27–March–2018

The city of Ekone has n parallel (east-west or horizontal) roads. The distance between two consecutive roads

is 1 km. The mayor of Ekone wants to build a cross road that runs north-to-south (or vertically) and uses

some portions of the existing horizontal roads. The cross road consists of vertical flyovers connecting two

consecutive roads. Assume that the positions of the flyovers are integers in the range 0,1,2, . . . ,n− 1 (the

unit of the distance is 1 km). This means the horizontal segments of the cross road run for integral numbers

of kilometers (zero is allowed). The following figure demonstrates a construction for n = 8 (the cross road

is the thick line).

i

j

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Suppose that the flyover connecting Road i with Road i+1 is at position ji. The mayor decides to obey the

constraints: 0 6 j0 6 j1 6 j2 6 · · · 6 jn−2 6 n− 1. The estimated cost of building a flyover from location

(i, j) to (i+1, j) is specified in an (n−1)×n matrix C. Assume that all C[i][j] are integers (the unit may be

millions of Ekonian pounds). In order to complete the construction of the cross road, the horizontal portions

used by the cross road also need to be upgraded. The cost of upgrading each kilometer of horizontal portion

is 5 units (irrespective of which horizontal roads the segments belong to). The total construction cost is the

sum of the costs of building the n−1 flyovers and of the costs of upgrading the horizontal segments.

Notice that the topmost flyover can be at j0 > 0. In that case, you do not include the cost of the horizontal

segment (0,0) to (0, j0). Likewise, if the the bottommost flyover is at jn−2 < n−1, the cost of the horizontal

segment (n−1, jn−2) to (n−1,n−1) is not to be included in the total construction cost.

The mayor calls you to work out the locations of the flyovers so that the total construction cost is minimized.

Part 1: In this part, you implement the following greedy strategy. Suppose that you have decided the

locations of the first i flyovers, and are at a position (i, ji−1) on the (i+1)-st horizontal road (the road with

index i). If i > 0, the allowed locations of the next flyover are ji−1, ji−1 + 1, . . . ,n− 1. For each j in this

range, compute the cost of extending the cross road to use the horizontal segment from (i, ji−1) to (i, j)
and then to use a flyover from (i, j) to (i+ 1, j). Among the above possibilities of j, the one which gives

the minimum extension cost is taken as ji. If i = 0 (that is, you are deciding the location of the topmost

flyover), the search space for j is 0,1,2, . . . ,n−1, and you do not include the cost of any horizontal segment.

Implement this strategy in a function greedy(C,n). The function should return (or print) the minimum cost

computed. It should also print the locations of the flyovers, and the total cost for the horizontal segments.

Part 2: The greedy algorithm of Part 1 may fail to produce an optimal solution. Use dynamic programming

to compute an optimal solution. Build an n×n table T such that T [i][j] stores the minimum cost of building

the part of the flyover from the top to the position (i, j). If i > 0 and j > 0, then T [i][j] can be easily

derived from T [i− 1][j] and T [i][j − 1]. Handle the boundary conditions (i = 0 or j = 0) appropriately.

— Page 1 of 2 —

Write a function DP(C,n) to compute and return the minimum total construction cost of the cross road. The

running time of your algorithm should be O(n2). Do not use memoization.

Part 3: Copy the function DP of Part 2 to a function DPsol. The purpose of this function is to construct an

optimal cross road. That is, this function should print the optimal locations of the flyovers, and also the total

cost of upgrading the horizontal segments. The running time of DPsol should again be O(n2).

The main() function

• Read n from the user.

• Read from the user the array C storing the flyover-building costs, in the row-major order (that is, row

by row, and in each row, from left to right). Recall that C is an (n−1)×n matrix of positive integers.

• Call greedy to obtain and print a greedy solution.

• Call DP to obtain and print the optimal (minimum) total construction cost.

• Call DPsol to print the flyover locations and the total cost of upgrading the horizontal segments, as

recommended by an optimal solution.

Sample output

n = 5

+++ Flyover building costs

7 8 13 14 20

16 6 13 17 19

20 13 17 10 12

16 19 14 11 19

+++ Part 1: Greedy algorithm

Building flyover from (0,0) to (1,0): Cost = 7

Building flyover from (1,1) to (2,1): Cost = 6

Building flyover from (2,1) to (3,1): Cost = 13

Building flyover from (3,1) to (4,1): Cost = 19

Total cost of the horizontal segments = 5

--- Total cost = 50

+++ Part 2: Dynamic programming algorithm

--- Total cost = 45

+++ Part 3: Dynamic programming algorithm with solution

Building flyover from (0,1) to (1,1): Cost = 8

Building flyover from (1,1) to (2,1): Cost = 6

Building flyover from (2,3) to (3,3): Cost = 10

Building flyover from (3,3) to (4,3): Cost = 11

Total cost of the horizontal segments = 10

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

