
CS29003 Algorithms Laboratory

Assignment No: 2

Last date of submission: 23–January–2018

Suppose that you want to sort an array. You are not allowed to modify the array. This may be because

the array resides in read-only memory, or because you do not have write access to the array. You can still

implement the standard sorting algorithms by manipulating arrays of indices, to which you have read and

write accesses. This assignment deals with a couple of such applications. This assignment also demonstrates

that merge sort and quick sort are comparison-based sorting algorithms.

Part 1: Indexed Merge Sort

A black box contains n balls B0,B1,B2, . . . ,Bn−1. Suppose that no two balls are of the same size. You do not

know the size of any of the Bi’s, because the balls are hidden inside the black box. The black box is, however,

equipped to answer queries of the form compareballs(i,j) which returns 0,1,−1 according as whether

Bi and B j are of the same size (in the case i = j), Bi is bigger than B j, or Bi is smaller than B j, respectively.

Your task is to prepare an array S = [s0,s1,s2, . . . ,sn−1] of indices such that Bs0
,Bs1

,Bs2
, . . . ,Bsn−1

is the sorted

sequence of the balls in the ascending order of their sizes.

Modify merge sort to solve your problem. Your modification should use the array S to look into the actual

sizes of the balls. Instead of moving/swapping/copying the sizes themselves, you move/swap/copy the

indices. For example, if si = j, then Bsi
is the j-th ball B j (or the size of the j-th ball). But you cannot access

B j or its size. However, you are free to make any modification to your own array S.

Part 2: Two-Way Indexed Quick Sort

The black box also contains n boxes X0,X1,X2, . . . ,Xn−1. It is given that for every ball Bi there is a unique

box X j such that Bi snugly fits in X j. Definitely, Bi fits in a bigger box, but does not fit in a smaller

box. Your task is to find out which ball fits snugly in which box, that is, you need to prepare an array

M = [m0,m1,m2, . . . ,mn−1] such that the ball Bi is the exact match for the box Xmi
.

In Part 1, you have sorted the balls in the ascending order of their sizes. Likewise, if you can sort the boxes,

you are done. Unfortunately, the black box is not willing to answer any query on comparisons of box sizes.

It instead is equipped to answer queries of the form fitsin(i,j). The return value is 0 if the box X j is

the exact match for the ball Bi. If Bi fits in X j but it is not a snug fitting, the return value is 1. Finally, if Bi

is too large to fit in X j, then −1 is returned.

Modify quick sort to prepare M. You may or may not use the array S available from Part 1. Partitioning may

use additional arrays. Now, make fitsin queries, but compareballs queries are not allowed. The balls

and boxes arrays are sufficiently randomized, so you can expect an O(n logn) performance of quick sort. If

you make more (like Θ(n2)) queries, the black box becomes very angry, and refuses to continue talking with

your program.

Handling the Black Box

Download and store the compiler-specific binary file blackbox2.o in the same directory where your

program resides. Compile as follows.

gcc myprog.c blackbox2.o

g++ myprog.cpp blackbox2.o

At the top of your code, write these extern prototypes.

extern int registerme (int);

extern void startsort ();

extern int compareballs (int, int);

extern void verifysort (int *);

extern void startmatch (int);

extern int fitsin (int i, int j);

extern void verifymatch (int *);

— Page 1 of 2 —

Register yourself by calling registerme(n) at the beginning of your main() function. Here, n is the

count of balls (or boxes) in the black box. You may read n from the user. The recommended values are in

the range 103 6 n 6 107. However, you can debug with smaller examples. All other black-box calls assume

this value of n. You do not need to pass n explicitly to these calls. Your own functions may, however, need

the value of n as parameters.

The call startsort() lets the black box prepare to help you in solving Part 1. Call compareballs() as

many times as your merge sort implementation wants. When you have prepared the final sorting index array

S, call verifysort(S) to verify the correctness of your implementation.

Start with the call startmatch(flag) for solving Part 2. If you want to use the array S of Part 1 in the

matching problem, pass 1 as flag, else pass 0 as flag. You may call fitsin() at most a limited number

of times. Verify the correctness of the final matching array M produced by your quick sort implementation,

by calling verifymatch(M).

Here is how your main() function would look like.

int n = 1000000;

registerme(n);

printf("\n+++ Sorting the balls...\n");

startsort();

...

verifysort(S);

printf("\n+++ Finding the matching boxes...\n");

startmatch(0);

...

verifymatch(M);

Successful output

+++ Sorting the balls...

*** Great! You cracked it.

+++ Finding the matching boxes...

*** Great! You cracked it.

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

