CS29003 Algorithms Laboratory
Assignment No: 1

Last date of submission: 16-January—2018

A black box has four secret integers a;,a,,as, as in the range [1,N], where N = 108 for this assignment. You
play four games with the black box to identify the secret integers. The rules of the four games are different
from one another. In each game, you are allowed to make integer-valued guessing queries to the black
box which, in turn, returns appropriate values. When you think that you have guessed the secret correctly,
validate your result by making a verification query to the black box.

Game 1: In this game, you make a linear search for a;, that is, make guessing queries in the sequence
a=1,2,3,.... The black box returns 0 if @ # a; or 1 if a = a;. So you stop when the black box returns 1.
Write a function playgamel () to implement this game.

Game 2: In this game, you keep on making random guessing queries « in the range [1,N]. Like in Game 1,
the black box returns 0 if a # a; or 1 if a = a,. So you stop when you receive the response 1 from the black
box. Write a function playgame2 () to implement this game. You do not have to make any effort to avoid
repeated random queries on the same guesses.

A random guess a is equal to the secret a, with probability 1/N. Therefore after making ®(N) queries, you
expect to identify the secret ap. In practice, your guesses may be so unlucky that the number of iterations
becomes @ (N). The probability of such an event is however very low. An algorithm of this type is called a
randomized algorithm of the Las Vegas type. Such an algorithm has some expected runtime guarantees, and
whenever it terminates, it outputs the correct result.

In Games 1 and 2, there is no limit on how many guessing queries you may make to the black box. In the
remaining two games, you are allowed to make only a limited number of queries. The black box will supply
you more information than YES/NO, which you should use as hints to quickly arrive at the secret.

Game 3: In this game, the maximum number of queries allowed is about 2 [lgN]. For N = 108, [IlgN] = 27,
and the black box actually allows up to 56 queries. In this case, the black box returns one of the four integers
0,1,2,3. Suppose that your current query is a, and your previous query was p. Then, the return values should
be interpreted in the following manner. If you make an error (like you did not register or did not initialize
the game), the return value is 0. If a = a3, the return value is 1. If your current guess is better than or equally
distant from the previous guess, that is, if |a — a3| < |p — a3/, the return value is 2. Finally, if your current
guess is poorer than the previous guess, that is, if |a — a3| > |p — a3/, the return value is 3. During your first
guessing query, there is no previous query, so you disregard the return value (unless it is 1).

Write a function playgame3 () to implement a binary-search-like procedure. Let [L,R] be the interval
where the secret is known to exist. Initially, L = 1 and R = N. You make two guessing queries on L and R.
If any such query results in a return value of 1, you are done. Otherwise, you gain the information which of
L and R is closer to the secret. Halve the search interval accordingly. Stop when the interval size reduces to
one (that is, when you have L = R).

Game 4: This game is identical to Game 3 with the exception that now you are allowed to make about
[1gN] queries (for N = 108, the actual limit is 28). The return values 0, 1,2, 3 are to be interpreted exactly
as in Game 3 (with a3 replaced by a4). Write a function playgame4 () to identify ag.

Handling the black box

The black box is presented to you as a precompiled binary file blackboxl.o. Depending upon your
compiler (gee or g++), download the appropriate file, and store it in the directory where you are working.

Insert the following lines globally (that is, outside all functions) near the beginning of your program (that
is, before you actually call them). These functions are implemented in the code of the black box. The
compiler links the black box after your program gets compiled. These directives keep the compiler happy
by informing it the exact prototypes of the functions.

— Page 1 of2 —

extern void registerme ();

extern void startgame (int);
extern int guess (int);
extern void verifysoln (int);

At the beginning of your main () function, call registerme () to initiate the black box. You cannot do
anything without registering yourself. You start each game by calling startgame (n), wheren € {1,2,3,4}
is the game number. In order to make a guessing query on a, call guess (a). The return value is to be
interpreted as detailed in the descriptions of the games. The black box entertains guessing queries outside
the interval [1,N], but why do you need to make any such query? When you think that you have guessed a
secret a correctly, call verifysoln (a) in order to validate your hunch. Also, record and print the running
times of the four games. For example, you should play Game 1 as follows.

#include <time.h>

clock_t cl, c2;
int a;

registerme () ;

startgame (1) ;

cl = clock(); a = playgamel(); c2 = clock();
printf ("\n+++ Game 1\n al = %d\n", a);
printf (" Time taken = %1f sec\n", (double) (c2-cl)/ (double)CLOCKS_PER_SEC) ;

verifysoln(a);

Notice that verifysoln ends the running game. You cannot make any further guessing queries before
starting (or restarting) another (or the same) game. If you exceed the query limit in Games 3 and 4, the
blackbox terminates your program.

Depending upon your compiler, compile your program as follows.

gcc myprog.c blackboxl.o
g++ myprog.cpp blackboxl.o

Sample output

+++ Game 1

al = 64965365

Time taken = 0.524319 sec
*%x%x Yep! Your guess is correct.

+++ Game 2

a2 = 78161829

Time taken = 1.295109 sec
*%% Yep! Your guess is correct.

+++ Game 3

a3 = 4633204

Time taken = 0.000002 sec
**% Yep! Your guess is correct.

+++ Game 4

a4 = 81685977

Time taken = 0.000001 sec
*%% Yep! Your guess is correct.

Submit a single C/C++ source file. Do not use global/static variables.

— Page2of2 —

