
CS29003 Algorithms Laboratory

Assignment No: 10

Last date of submission: 26–October–2017

Let S and T be two strings of lengths n and m, respectively. The symbols in the strings are σ lower-case

alphabetic letters a,b,c, For example, if σ = 5, then the symbols are a,b,c,d,e.

For k > 0, the string Tk is generated by repeating each symbol of T exactly k times. For example, if

T = bccab, then T3 = bbbccccccaaabbb. We take T0 to be the empty string (which is a subsequence of any

string). Your task is to find the largest k such that Tk is a subsequence (not necessarily a substring) of S.

Assume that n > m. Clearly, we have 0 6 k 6 ⌊n/m⌋.

Part 1: Helping Functions

Write a function issubseq(A,B) that returns the decision whether B is a subsequence of A. Write another

function repsymbols(T,k) that returns the k-fold repetition Tk of k. Finally, write a function prnsubseq(A,B)
that, given a subsequence B of A, prints the occurrence of B in A in the format specified in the sample output.

Part 2: Exhaustive Search

Since 0 6 k 6 ⌊n/m⌋ and T0 is always a subsequence of S, keep on generating T1,T2,T3, . . . as long as these

strings are subsequences of S. Return the largest k. Implement this strategy in a function exhs(S,T). The

running time of this function is evidently O(n2/m).

Part 3: Divide-and-Conquer Strategy 1

Write a function dnc1(S,T,σ) which works as follows. If n < 2m, the function checks whether T

is a subsequence of S, and returns 1 or 0 accordingly. So suppose that n > 2m. The function first

breaks S into two subsequences S1 and S2 by taking alternate occurrences of each symbol from S. This

procedure is demonstrated in the following figure. For S = baadacbdbbbdadba, the two subsequences are

S1 = badacbbda and S2 = abdbadb. These are roughly of size n/2 each.

a a a ab b b bb c dd d abd

b a a

a

a

b

b b

b b

d

d

d

d

c

a

The original array

The first subsequence

The second subsequence

Two recursive calls are made on S1 and S2. Let the return values be k1 and k2. The maximum k for S is

related to the two return values in the following manner.

Case 1: k = 2l is even

In this case, we must have k1 = k2 = l. To see why, first note that each of S1 and S2 contains Tl

as a subsequence. If one of them, say S1, contains Tl+1 as a subsequence, then for each symbol

α in T , the l + 1 occurrences of α from Tl+1 have, in S, l intermediate occurrences of α that

were sent to S2. Therefore S contains T2l+1 as a subsequence, a contradiction.

Case 2: k = 2l +1 is odd

In this case, k1,k2 ∈ {l, l + 1}. For the proof, note that each of S1 and S2 must contain Tl and

may contain Tl+1, but neither contains Tl+2. This can be proved as in Case 1. All the four cases

are possible. This is demonstrated now (for k = 1 and l = 0). We take T = abcd in all the cases.

— Page 1 of 2 —

S = abdcbacd, so S1 = abdc and S2 = bacd, which implies that k1 = k2 = 0.

S = dcbaabcd, so S1 = dcba and S2 = abcd, which implies that k1 = 0, k2 = 1.

S = abcddcba, so S1 = abcd and S2 = dcba, which implies that k1 = 1, k2 = 0.

S = abcdabcd, so S1 = abcd and S2 = abcd, which implies that k1 = k2 = 1.

From these observations, it follows that k ∈ {k1 + k2 − 1,k1 + k2,k1 + k2 + 1}. Which one is the correct

value of k can be verified by exhaustive search (over three possibilities only). The running time of this

divide-and-conquer algorithm is O(n logn) (actually, O(n log(n/m))).

Part 4: Divide-and-Conquer Strategy 2

The divide-and-conquer algorithm of Part 3 can be readily modified to an O(n)-time algorithm. Implement

this linear-time algorithm in a function dnc2(S,T,σ).

The main() function

• Read the number σ of symbols (this is s in the sample output), the sizes n and m, and the strings S

and T from the user. Instead of reading n and m, you can compute these lengths by calling strlen on

S and T . Note that σ is needed in Parts 3 and 4.

• Call exhs(S,T), and print the value returned.

• Call dnc1(S,T,σ), and print the value returned.

• Call dnc2(S,T,σ), and print the value returned.

• Print the match of Tk (where k is any of the three return values) in S by calling repsymbols and

prnsubseq.

Sample output

s = 3

n = 80

m = 4

S = bbcbbbcacbacbacbacabccaaabcccccbabacbcaabbacbabcccbcccbcbbcbabacabbcbcccaaccbabb

T = cacb

+++ Exhaustive search

k = 8

+++ Divide and Conquer Strategy 1

k = 8

+++ Divide and Conquer Strategy 2

k = 8

+++ The subsequence is:

bbcbbbcacbacbacbacabccaaabcccccbabacbcaabbacbabcccbcccbcbbcbabacabbcbcccaaccbabb

c c c c c c ccaaa a a aa ac ccc ccc cbb b b bb b b

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

