CS29003 Algorithms Laboratory Assignment No: 10 Last date of submission: 26–October–2017

Let *S* and *T* be two strings of lengths *n* and *m*, respectively. The symbols in the strings are σ lower-case alphabetic letters *a*,*b*,*c*,.... For example, if $\sigma = 5$, then the symbols are *a*,*b*,*c*,*d*,*e*.

For $k \ge 0$, the string T_k is generated by repeating each symbol of T exactly k times. For example, if T = bccab, then $T_3 = bbbccccccaaabbb$. We take T_0 to be the empty string (which is a subsequence of any string). Your task is to find the largest k such that T_k is a subsequence (not necessarily a substring) of S. Assume that $n \ge m$. Clearly, we have $0 \le k \le \lfloor n/m \rfloor$.

Part 1: Helping Functions

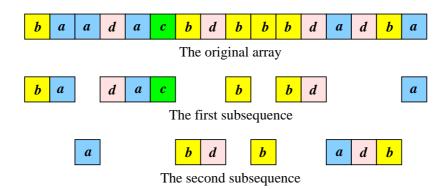
Write a function *issubseq*(A,B) that returns the decision whether B is a subsequence of A. Write another function *repsymbols*(T,k) that returns the k-fold repetition T_k of k. Finally, write a function *prnsubseq*(A,B) that, given a subsequence B of A, prints the occurrence of B in A in the format specified in the sample output.

Part 2: Exhaustive Search

Since $0 \le k \le \lfloor n/m \rfloor$ and T_0 is always a subsequence of *S*, keep on generating T_1, T_2, T_3, \ldots as long as these strings are subsequences of *S*. Return the largest *k*. Implement this strategy in a function exhs(S,T). The running time of this function is evidently $O(n^2/m)$.

Part 3: Divide-and-Conquer Strategy 1

Write a function $dnc1(S, T, \sigma)$ which works as follows. If n < 2m, the function checks whether *T* is a subsequence of *S*, and returns 1 or 0 accordingly. So suppose that $n \ge 2m$. The function first breaks *S* into two subsequences S_1 and S_2 by taking alternate occurrences of *each* symbol from *S*. This procedure is demonstrated in the following figure. For S = baadacbdbbbdadba, the two subsequences are $S_1 = badacbbda$ and $S_2 = abdbadb$. These are roughly of size n/2 each.



Two recursive calls are made on S_1 and S_2 . Let the return values be k_1 and k_2 . The maximum k for S is related to the two return values in the following manner.

Case 1: k = 2l is even

In this case, we must have $k_1 = k_2 = l$. To see why, first note that each of S_1 and S_2 contains T_l as a subsequence. If one of them, say S_1 , contains T_{l+1} as a subsequence, then for each symbol α in T, the l + 1 occurrences of α from T_{l+1} have, in S, l intermediate occurrences of α that were sent to S_2 . Therefore S contains T_{2l+1} as a subsequence, a contradiction.

Case 2: k = 2l + 1 is odd

In this case, $k_1, k_2 \in \{l, l+1\}$. For the proof, note that each of S_1 and S_2 must contain T_l and may contain T_{l+1} , but neither contains T_{l+2} . This can be proved as in Case 1. All the four cases are possible. This is demonstrated now (for k = 1 and l = 0). We take T = abcd in all the cases.

S = abdcbacd, so $S_1 = abdc$ and $S_2 = bacd$, which implies that $k_1 = k_2 = 0$. S = dcbaabcd, so $S_1 = dcba$ and $S_2 = abcd$, which implies that $k_1 = 0$, $k_2 = 1$. S = abcddcba, so $S_1 = abcd$ and $S_2 = dcba$, which implies that $k_1 = 1$, $k_2 = 0$. S = abcdabcd, so $S_1 = abcd$ and $S_2 = abcd$, which implies that $k_1 = k_2 = 1$.

From these observations, it follows that $k \in \{k_1 + k_2 - 1, k_1 + k_2, k_1 + k_2 + 1\}$. Which one is the correct value of k can be verified by exhaustive search (over three possibilities only). The running time of this divide-and-conquer algorithm is $O(n \log n)$ (actually, $O(n \log(n/m))$).

Part 4: Divide-and-Conquer Strategy 2

The divide-and-conquer algorithm of Part 3 can be readily modified to an O(n)-time algorithm. Implement this linear-time algorithm in a function $dnc2(S, T, \sigma)$.

The *main()* function

- Read the number σ of symbols (this is *s* in the sample output), the sizes *n* and *m*, and the strings *S* and *T* from the user. Instead of reading *n* and *m*, you can compute these lengths by calling *strlen* on *S* and *T*. Note that σ is needed in Parts 3 and 4.
- Call *exhs*(*S*,*T*), and print the value returned.
- Call $dnc1(S, T, \sigma)$, and print the value returned.
- Call $dnc2(S, T, \sigma)$, and print the value returned.
- Print the match of T_k (where k is any of the three return values) in S by calling *repsymbols* and *prnsubseq*.

Sample output

Submit a single C/C++ source file. Do not use global/static variables.