
CS29003 Algorithms Laboratory

Assignment No: 9

Last date of submission: 12–October–2017

A CGPA is technically a floating-point number in the range [5.00,10.00]. However, CGPAs are truncated

(or rounded) two places after the decimal point. This means that if x is a CGPA, then 100x is an integer in

the range [500,1000]. Moreover, 100x−500 is an integer in the range [0,500]. In this assignment, you deal

with these integer versions of CGPAs. Your task is to sort an array A storing n integer-valued CGPAs.

Part 1: Your first task is to generate a random array A of n CGPAs. In a population of students, the floating-

point CGPA x satisfies the following probability distribution: Pr[5 6 x 6 6] = 0.05, Pr[6 < x 6 7] = 0.2,

Pr[7 < x 6 8] = 0.3, Pr[8 < x 6 9] = 0.3, and Pr[9 < x 6 10] = 0.15. When we convert x to an integer

X ∈ [0,500], we have the equivalent probabilities Pr[0 6 X 6 100] = 0.05, Pr[100 < X 6 200] = 0.2, and so

on. Assume that in each band, the different CGPA values are equally likely, that is, we have

Pr[X = a] =























0.05/101 if 0 6 a 6 100,

0.20/100 if 101 6 a 6 200,

0.30/100 if 201 6 a 6 300,

0.30/100 if 301 6 a 6 400,

0.15/100 if 401 6 a 6 500.

You should generate the array A of n CGPAs following this probability distribution. The rand() library

function returns a random integer in the range [0,RAND_MAX]. This function can be used to generate samples

following other probability distributions.

In general, let X be a random variable that assumes integer values in the range [0,m]. Let pi = Pr[X = i] for

i ∈ [0,m]. Consider the cumulative probability qi =
i

∑
j=0

p j. We generate a (uniformly) random floating-point

number y ∈ [0,1] by dividing a rand() output by RAND_MAX. If y 6 q0, we output the integer 0. Otherwise,

We locate the i ∈ [1,m] such that qi−1 < y 6 qi, and output i. Notice that the cumulative-probability array

(q0,q1,q2, . . . ,qm) is sorted in the ascending order, so the index i can be located by a binary search. The

running time of this algorithm to generate the array A is O(n logm).

In the current situation, a somewhat more efficient (O(n)-time) algorithm can be designed. Implement some

algorithm to generate the array A of n integer-valued CGPAs following the distribution given above.

Part 2: Implement quick sort in a function quicksort for sorting integer arrays. Do not use the qsort

library function defined in the standard C/C++ libraries. Partitioning should be inline, that is, no additional

temporary arrays may be used.

Part 3: Write a function countingsort1 to implement the standard stable counting sort algorithm for CGPA

arrays. The function should use a count array C, and a temporary array B of size n = |A| which is finally

copied back to the input array A.

Part 4: In this particular application, we are sorting integer values in the range [0,500] (not records

containing these integer values). Therefore the array B can be eliminated altogether. You still need the

count array C. Implement this idea in a function countingsort2.

The main() function

• Read n from the user. For this assignment, n should be in the range [104,108].

• Call the function of Part 1 to generate a CGPA array A of size n with elements following the given

probability distribution. Make copies of A in two separate arrays B and C.

• Run quicksort on A, and report the running time.

• Run countingsort1 on B, and report the running time.

• Run countingsort2 on C, and report the running time.

— Page 1 of 2 —

Sample output

n = 100000000

+++ Array generation time = 4.904727 sec

+++ Quick sort time = 11.338450 sec

+++ Counting sort 1 time = 1.461599 sec

+++ Counting sort 2 time = 0.748255 sec

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

