
CS29003 Algorithms Laboratory

Assignment No: 6

Last date of submission: 31–August–2017

A node storing a key value and two pointers can be a building block of (1) a doubly linked list where the

pointers are interpreted as the previous and next pointers, and (2) a binary tree where the pointers play the

role of child pointers. In this assignment, you build a BST (with integer keys) based on user inputs, convert

that tree to a doubly linked list, and convert back the list to a balanced tree. In a (size-)balanced tree, the two

subtrees at every node differ in size by at most one. Size balance implies height balance (but not conversely).

Part 1: Write the basic functions for binary search trees: (1) Printing in the format shown in the sample

output, (2) Insertion, (3) Left rotation, and (4) Right rotation.

RR

v

L

u

RL

v

u

LR R

LL

u

v
L

RL RR

u

v
R

LL LR

(b) Right rotation(a) Left rotation

Also write a function that, given a doubly linked list, first prints the list in the forward direction and then in

the backward direction.

Part 2: Write a function tree2list that takes a binary search tree as input and adjusts the pointers so that the

result is a sorted doubly linked list on the same nodes. A header of the list (pointer to the smallest node) is

subsequently returned. The function works as follows.

Let us see what happens in the left subtree of the input BST T . The right subtree can be symmetrically

handled. Keep on making left rotations until the left subtree becomes a tree connected only by the left

pointers. See the figure on the next page for an illustration. Since the right subtree of Node 40 is not NULL,

we do a left rotation there, bringing 747 as the new child of the root. Moreover, 40 gets the subtree rooted at

682 as its new right subtree. Node 747 does not possess a right child, so we move down the tree, and again

reach Node 40. Another left rotation at this node brings 682 in the correct position, and so on.

When the two subtrees are completely flattened (see Part (b) of the figure on the next page), all the right

pointers in the left subtree and all the left pointers in the right subtree are NULL. Reorient these pointers so

that they act as parent pointers. After this, the desired doubly linked list is ready (see Part (c) of the figure).

Part 3: Write a function list2tree to convert a sorted doubly linked list to a balanced binary search tree.

Let n be the number of nodes in the input list. Locate the position of the root such that its left subtree will

contain
⌈

n−1
2

⌉

nodes, and the right subtree
⌊

n−1
2

⌋

nodes. Recursively build the two subtrees. See Part (d) of

the figure on the next page.

The main() function

• Read n from the user. Initialize T to an empty BST.

• The user then supplies n keys. Insert them in T . The resulting tree has 6 n nodes. Print T .

• Call tree2list to get a sorted doubly linked list L of the key values stored in the tree. The function,

after flattening the two trees, prints the tree. It then makes the pointer rearrangements to convert T to

L. Print L using the list-printing function.

• Call list2tree to convert L to a balanced tree T . Print T .

Submit a single C/C++ source file. Do not use global/static variables.

— Page 1 of 2 —

(c)

682 747 759 784 838

759

784

838

747

682

459

360

149

40

6

6 45940 149 360

149

459

360

40

6

784

759 838

(d)

838

747

682

759

40

6 784

149

360

459

(a) (b)

682

747

Sample output

10

759 40 747 682 149 360 6 838 784 459

+++ Initial tree

6

40

149

360

459

682

747

759

784

838

+++ Flattened tree

6

40

149

360

459

682

747

759

784

838

+++ Linked list

6 40 149 360 459 682 747 759 784 838

838 784 759 747 682 459 360 149 40 6

+++ Balanced tree

6

40

149

360

459

682

747

759

784

838

— Page 2 of 2 —

