
CS29003 Algorithms Laboratory

Assignment No: 3

Last date of submission: 10–August–2017

There are n identical items (like balls) in a bag. A game is played between two players: P (you) and C

(the computer). Moves alternate between P and C. Player P makes the first move. In each move, a player

removes some number of items from the bag. The number of items to be taken out in each move has to be

one of p0, p1, p2, . . . , pk−1, where k and the pi values are known beforehand to both the players. Assume,

for simplicity, that 1 6 p0 < p1 < p2 < · · ·< pk−1. The player who fails to make the next move loses. This

happens when the number of items remaining in the bag becomes less than p0.

Let i be the remaining number of balls in the bag. By Ti, we denote an optimal move at this point for the

player who is going to make the next move. If a suitable move j ∈ {0,1,2, . . . ,k−1} forces the opponent to

lose, we call i a winning position of the player, and set Ti = j. If multiple values of j lets the player win, we

choose the largest of these j values as Ti. On the contrary, if all allowed moves fail to force the opponent to

a losing position, i is a losing position for the player to move next, and we set Ti =−1.

Game 1

Here, the pickup quantities pi are assumed to be arbitrary (but sorted as mentioned above). Build a table

T [0 . . .n] to store the Ti values as defined above. We have Ti = −1 for i = 0,1,2, . . . , p0 − 1. For i > p0, Ti

can be computed as follows. Consider a move j ∈ {0,1,2, . . . ,k−1}. This move is legitimate if and only if

i > p j. If so, making this move will leave i− p j items in the bag. If Ti−p j
=−1, then this is a losing position

for the opponent. Otherwise, the opponent has an optimal move. Check for all legitimate values of j. Write

a function T = dptable(n,k, p) to prepare and return the table T using the above dynamic-programming

algorithm. Notice that your function requires O(nk) time and O(n) space.

Write a function playgame1() to play Game 1 with the computer. See How to Operate the Black Box.

Game 2

This game assumes that p j = p0 + j for all j = 0,1,2, . . . ,k−1, that is, the allowed pickup choices are the

consecutive integers from first = p0 to last = p0 + k− 1. In this case, you do not need the O(nk)-time and

O(n)-space preprocessing for building the table T as in Game 1. Given any i ∈ [0,n], you can calculate Ti in

O(1) time and using O(1) space. Figure out how.

Write a function playgame2() to play Game 2 with the computer. This is detailed in the next section.

How to Operate the Black Box

The moves of the computer C are presented to you as a compiled black box. Download the appropriate file

depending on your compiler (gcc/g++).

• Include the following lines at the beginning of your program. These are the functions defined in the

black box.

extern int *registerme ();

extern int makemove1 (int);

extern int makemove2 (int);

• Make a call to registerme to set up the parameters of the games.

int *A, n, k, *p;

A = registerme();

n = A[0];

k = A[1];

p = A + 2;

After this call returns, A[0] stores n, A[1] stores k, and A[2],A[3],A[4], . . . ,A[k+1] store p0, p1, p2, . . . ,

pk−1, respectively.

— Page 1 of 2 —

• Call dptable() to build the table T .

• Call playgame1() to play Game 1 with the computer C. Your moves are to be guided by T and the

current number i of items left in the bag. So long as i > 0, look at Ti. If Ti = j > 0, call makemove1(j).
Notice that you pass an index j ∈ {0,1,2, . . . ,k− 1} (not a p j value). If Ti = −1, make a random

move—you cannot win from this position. Your move lets the computer C determine its next move.

After the two moves, the number of items left in the bag is returned. The function prints the moves of

P and C (the values, not indices), so you do not have to print those again.

• Call playgame2() to play Game 2 with C. The allowed pickup choices are all the integers from first

to last. Now, you are not allowed to build any table T . You can make O(1) preprocessing (like

the computation of first and last). Call makemove2(j) for supplying your next move that would be

followed by a move to be made by C. As in Game 1, you pass an index j between 0 and k−1 (both

inclusive), not p j = p0 + j, to makemove2. The return value is the number of items left in the bag

after the moves of P and C. This function too prints the moves (values) of both P and C.

• Link the black-box code during compilation.

gcc/g++ -Wall myprog.c/myprog.cpp blackbox3.o

Sample output

*** Registration done.

*** Play Game 1

n = 1764

k = 12

The choices are: 15 19 20 22 23 24 26 27 28 33 38 41

P-28 C-33 P-23 C-23 P-33 C-19 P-33 C-28 P-28 C-22 P-38 C-26 P-28 C-28 P-28 C-27

P-28 C-24 P-33 C-28 P-28 C-26 P-28 C-28 P-28 C-15 P-41 C-28 P-28 C-19 P-41 C-19

P-33 C-23 P-33 C-24 P-33 C-22 P-33 C-19 P-41 C-22 P-33 C-20 P-33 C-23 P-33 C-38

P-22 C-28 P-28 C-20 P-33 C-28 P-28 C-41 P-15 C-23 P-33 C-20 P-38 C-24 P-33

*** Congratulations. You have won.

*** Play Game 2

n = 1764

k = 12

The choices are: 15 16 17 18 19 20 21 22 23 24 25 26

P-20 ...

...

...

...

...

...

*** Oops. You have lost.

This is not your fault anyway. Better luck next time.

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

