CS29003 Algorithms Laboratory
Assignment No: 3
Last date of submission: 10—August—2017

There are n identical items (like balls) in a bag. A game is played between two players: P (you) and C
(the computer). Moves alternate between P and C. Player P makes the first move. In each move, a player
removes some number of items from the bag. The number of items to be taken out in each move has to be
one of po,p1,p2,-..,Pr—1, Where k and the p; values are known beforehand to both the players. Assume,
for simplicity, that 1 < pp < p1 < p2 < -+ < pr—1. The player who fails to make the next move loses. This
happens when the number of items remaining in the bag becomes less than py.

Let i be the remaining number of balls in the bag. By 7;, we denote an optimal move at this point for the
player who is going to make the next move. If a suitable move j € {0,1,2,...,k— 1} forces the opponent to
lose, we call i a winning position of the player, and set 7; = j. If multiple values of j lets the player win, we
choose the largest of these j values as 7;. On the contrary, if all allowed moves fail to force the opponent to
a losing position, i is a losing position for the player to move next, and we set 7; = —1.

Game 1

Here, the pickup quantities p; are assumed to be arbitrary (but sorted as mentioned above). Build a table
T10...n] to store the 7; values as defined above. We have T, = —1 for i = 0,1,2,...,po — 1. Fori > po, T;
can be computed as follows. Consider a move j € {0,1,2,...,k— 1}. This move is legitimate if and only if
i z pj. If so, making this move will leave i — p; items in the bag. If 7;_,, = —1, then this is a losing position
for the opponent. Otherwise, the opponent has an optimal move. Check for all legitimate values of j. Write
a function T = dptable(n,k, p) to prepare and return the table T using the above dynamic-programming
algorithm. Notice that your function requires O(nk) time and O(n) space.

Write a function playgamel () to play Game 1 with the computer. See How to Operate the Black Box.

Game 2

This game assumes that p; = po+ j forall j =0,1,2,...,k— 1, that is, the allowed pickup choices are the
consecutive integers from first = pg to last = po+ k — 1. In this case, you do not need the O(nk)-time and
O(n)-space preprocessing for building the table T as in Game 1. Given any i € [0, 7], you can calculate 7; in
O(1) time and using O(1) space. Figure out how.

Write a function playgame2() to play Game 2 with the computer. This is detailed in the next section.

How to Operate the Black Box

The moves of the computer C are presented to you as a compiled black box. Download the appropriate file
depending on your compiler (gcc/g++).

e Include the following lines at the beginning of your program. These are the functions defined in the

black box.
extern int xregisterme ();
extern int makemovel (int);
extern int makemove2 (int);

e Make a call to registerme to set up the parameters of the games.

int %A, n, k, *p;

A = registerme();
n = A[0];
k = A[l];
p=A+ 2

After this call returns, A[0] stores n, A[1] stores k, and A[2],A[3],A[4],...,A[k+ 1] store po, p1,p2,- -,
Pi—1, respectively.

— Page 1 of2 —

e Call dptable() to build the table 7.

e Call playgamel () to play Game 1 with the computer C. Your moves are to be guided by 7" and the
current number i of items left in the bag. So long as i > 0, look at 7;. If T; = j > 0, call makemovel ().
Notice that you pass an index j € {0,1,2,...,k— 1} (not a p; value). If 7; = —1, make a random
move—you cannot win from this position. Your move lets the computer C determine its next move.
After the two moves, the number of items left in the bag is returned. The function prints the moves of
P and C (the values, not indices), so you do not have to print those again.

e Call playgame2() to play Game 2 with C. The allowed pickup choices are all the integers from first
to last. Now, you are not allowed to build any table 7. You can make O(1) preprocessing (like
the computation of first and last). Call makemove2(j) for supplying your next move that would be
followed by a move to be made by C. As in Game 1, you pass an index j between 0 and k — 1 (both
inclusive), not p; = po + j, to makemove2. The return value is the number of items left in the bag
after the moves of P and C. This function too prints the moves (values) of both P and C.

e Link the black-box code during compilation.

gcc/g++ —Wall myprog.c/myprog.cpp blackbox3.o

Sample output

*** Registration done.

xx% Play Game 1
n = 1764
k =12
The choices are: 15 19 20 22 23 24 26 27 28 33 38 41

P-28 C-33 P-23 C-23 P-33 C-19 P-33 C-28 P-28 C-22 P-38 C-26 P-28 C-28 P-28 C-27
P-28 C-24 P-33 C-28 P-28 C-26 P-28 C-28 P-28 C-15 P-41 C-28 P-28 C-19 P-41 C-19
P-33 C-23 P-33 C-24 P-33 C-22 P-33 C-19 P-41 C-22 P-33 C-20 P-33 C-23 P-33 C-38
P-22 C-28 P-28 C-20 P-33 C-28 P-28 C-41 P-15 C-23 P-33 C-20 P-38 C-24 P-33

*xx Congratulations. You have won.
*%% Play Game 2
n = 1764
k =12
The choices are: 15 16 17 18 19 20 21 22 23 24 25 26

P-20 ...

*%% Oops. You have lost.
This is not your fault anyway. Better luck next time.

Submit a single C/C++ source file. Do not use global/static variables.

— Page2of2 —

