
CS29003 Algorithms Laboratory

Assignment No: 2

Last date of submission: 03–August–2017

The State Bank of Greedland (SBG) is supposed to serve n customers on a day. All the customers come to

the bank at the opening time (t = 0), and request services. Serving the request of the i-th customer takes

time ti (an integer, like number of minutes), and the bank knows these times from the very beginning. The

bank has p processing counters. The objective of SBG is to schedule the customer requests to the counters

in such a way that the bank finishes serving all the requests as early as possible.

Computing the best possible solution to this problem is believed to be very difficult. Several greedy strategies

are known, that produce good solutions, that is, solutions within constant factors of the best possible solution.

In this assignment, you implement some such strategies.

Part 1: In this part, you write a function schedule1() that, given n, t0, t1, t2, . . . , tn−1, and p, produces

a schedule for the counters following a greedy approach outlined now. Suppose that the first i requests

t0, t1, t2, . . . , ti−1 are already scheduled. That means that the p counters have some assigned loads, and finish

the current loads at times f0, f1, f2, . . . , fp−1, respectively. The request ti is scheduled to the j-th counter if

f j = min(f0, f1, . . . , fp−1). In case multiple counters finish at the same minimum time, take j as small as

possible. The function schedule1() would return p arrays, each storing the computed schedule for a counter.

Use a two-dimensional array of integers to store a schedule. The i-th row starts with the number of requests

scheduled to the i-th counter, and is followed by the indices of the requests scheduled to this counter. You

may use a static array of predefined maximum dimensions or a dynamically allocated array. Do not use lists

defined in the STL. You should be fully responsible for structuring your data.

2 0 8

4 1 4 7 9

1 2

3 3 5 6

Alongside the scheduling function, write a function printschedule() that, given a schedule (a 2-D array),

prints the allocation of the requests to the counters as given in the sample output below. An allocation is

shown as a pair i (ti). The index i is available from the schedule (the 2-D array), and ti is read from the input

array t. Write another function finishingtime() that, given a schedule, returns the finishing time of the bank.

Part 2: The last request ti (say, served at Counter j) determines the finishing time of SBG. If ti is a long

request, whereas some other Counter k finishes earlier than Counter j after serving several short requests,

swapping the short requests by the long request and redistributing these short requests among the available

counters may improve the bank’s finishing time. But that requires scheduling ti out of order, that is, before

some of ti−1, ti−2, In other words, it is often possible to decrease the bank’s finishing time by scheduling

the longer requests earlier than the shorter ones.

To illustrate this concept, take n = p2 + 1 with the first p2 requests demanding time 1 each and the last

request demanding time p. The schedule of Part 1 evenly distributes the first p2 requests to the p counters,

and assigns the last request to the first counter, so the bank finishes at time 2p. The schedule of Part 2 would

assign the long request and one short request to the first counter, and evenly distribute the remaining p2−1

short requests to the remaining p−1 counters. Now, all the counters finish simultaneously at time p+1.

| ← p → || ← p → |
0 . . .

1 . . .

2 . . .

...

p−1 . . .

(a) Part 1

| ← p+1 → |
0

1 . . .

2 . . .

...

p−1 . . .

(b) Part 2

— Page 1 of 2 —

Write a function schedule2() that first sorts the times t0, t1, t2, . . . , tn−1 in the decreasing (or non-increasing)

order, and uses this sorted sequence to schedule following the same strategy as explained in Part 1. Write

your own function for merge sorting an array of integers in the non-increasing order. Do not use a library

function (like qsort() already implemented in the standard libraries of C and C++).

Part 3: Let the i-th customer be served by Counter j starting at time si. We call si the waiting time of

Customer i. It is equal to the sum of the times taken by the requests served at Counter j before Customer i

is served. The total waiting time is defined as

T =
n−1

∑
i=0

si.

Larger values of T imply higher dissatisfaction of the customers. Write a function totalwaittime() that, given

a schedule (in the form of a 2-D array), returns the value of T .

Write an O(n)-time function schedule3() to minimize customer dissatisfaction (the value of T) without

increasing the bank’s finishing time as achieved by the schedule of Part 2.

The main() function

• Read n (the number of customers) and p (the number of counters) from the user.

• Store in an array t0, t1, t2, . . . , tn−1 (positive integers) to be supplied by the user.

• Call schedule1(), and print the returned schedule using printschedule(), the bank’s finishing time by

calling finishingtime(), and the total waiting time of the customers by calling totalwaittime().

• Repeat for the schedule produced by schedule2().

• Repeat for the schedule produced by schedule3().

Sample output

n = 25

p = 5

Enter customer times:

13 11 25 23 14 22 3 24 22 8 27 2 21 21 5 19 7 12 25 5 12 30 8 27 2

+++ Schedule 1

Counter 0: 0 (13) 6 (3) 8 (22) 14 (5) 16 (7) 17 (12) 23 (27)

Counter 1: 1 (11) 5 (22) 12 (21) 19 (5) 22 (8)

Counter 2: 2 (25) 10 (27) 18 (25)

Counter 3: 3 (23) 9 (8) 11 (2) 13 (21) 20 (12) 24 (2)

Counter 4: 4 (14) 7 (24) 15 (19) 21 (30)

+++ Bank finishes at time 89

+++ Total waiting time = 772

+++ Schedule 2

Counter 0: 21 (30) 12 (21) 17 (12) 1 (11) 19 (5)

Counter 1: 10 (27) 5 (22) 15 (19) 22 (8) 11 (2)

Counter 2: 23 (27) 8 (22) 4 (14) 9 (8) 14 (5) 24 (2)

Counter 3: 2 (25) 7 (24) 0 (13) 20 (12) 6 (3)

Counter 4: 18 (25) 3 (23) 13 (21) 16 (7)

+++ Bank finishes at time 79

+++ Total waiting time = 1076

+++ Schedule 3

Counter 0: ...

Counter 1: ...

Counter 2: ...

Counter 3: ...

Counter 4: ...

+++ Bank finishes at time 79

+++ Total waiting time = 478

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

