
CS29003 Algorithms Laboratory

Supplement to Assignment 0

Derivation of S(i)

We clearly have S(0) = 1, S(1) = 3, and S(2) = 9. So assume that i > 3. Take 1 6 k 6 ⌊i/3⌋. Let σ(i,k) be

the count of all strings of length i containing k occurrences of abc and with the remaining i− 3k positions

filled by arbitrary symbols. Notice that this arbitrary filling may introduce further occurrences of abc. For

example, cabcababcabc is counted thrice in σ(12,1), thrice in σ(12,2), and once in σ(12,3). The principle

of inclusion and exclusion implies that

S(i) = 3i −σ(i,1)+σ(i,2)−σ(i,3)+− . . .+(−1) jσ(i, j),

where j = ⌊i/3⌋. For computing σ(i,k), think of a string of length i containing k specified occurrences of

abc. Replace each of these k occurrences of abc by a special symbol δ . This gives a string of length i−2k

with exactly k occurrences of δ and with i−3k occurrences of a,b,c. For example, consider cabcababcabc

while calculating σ(12,2). If the first and the last occurrences of abc are to be taken into account, the string

reduces to cδababcδ . The k positions of δ can be specified in
(

i−2k
k

)

ways, and the positions for a,b,c can

be filled in 3i−3k ways. Consequently, we have

σ(i,k) =

(

i−2k

k

)

3i−3k.

We thus get the final formula

S(i) = 3i +
⌊i/3⌋

∑
k=1

(−1)k

(

i−2k

k

)

3i−3k.

The required powers of three can be precomputed and stored in an array in a total of O(n) time. Each

binomial coefficient can be computed in O(n) time, so each S(i) can be computed in O(n2) time using the

precomputed powers of three. All the desired S(i) values are therefore computable in a total of O(n3) time.

Eqn (1) subsequently gives T (n) in O(n) time. The overall running time is therefore O(n3).

Exercise: Reduce the running time of this method to O(n2).

Hint: We need
(

r
k

)

for r = 3k,3k+1, . . . ,n−3. If some
(

r
k

)

is computed, we have

(

r+1

k

)

=
r+1

r− k+1

(

r

k

)

.

How does this observation help?

— Page 1 of 1 —


