
Proof of Correctness

Since Algorithm 2 is essentially the same as Algorithm 3 but operates under an assumption on the input, let

us concentrate on Algorithm 3 only. Also, we do not need to stop Algorithm 3 after it prints k sums. Let us

allow it to print all the AB-sums (that is, run the loop until Q becomes empty).

Claim: Algorithm 3 prints the AB-sums in ascending (actually, non-decreasing) order.

Proof Suppose that at some point of time, s is the smallest among the sums yet to be printed. It is

possible that a few instances of s have already been printed. But what is important is that at least one

more instance of s remains to be printed. We prove that there exists a pair (i∗, j∗) such that A[i∗]+B[j∗] = s,

and Q[1] = (i∗, j∗).

We first show that there is an (i, j) such that A[i]+B[j] = s, and (i, j) was inserted in Q. Let

X = {(i, j) | A[i]+B[j] = s, and (i, j) has not been printed so far}.

X is non-empty and so must have a minimal element (i, j). Here, the minimality of (i, j) means that for no

(i′, j′) ∈ X , (i′, j′) 6= (i, j), we have both i′ ≤ i and j′ ≤ j with at least one inequality strict. If (i, j) = (1,1),
then it has already been inserted in Q in the initialization step.

So suppose that (i, j) 6= (1,1), that is, either i ≥ 2 or j ≥ 2. Take the case i ≥ 2 (the other case is analogous).

We have ⌊i/2⌋ ≥ 1, that is, (⌊i/2⌋ , j) is a valid index pair. Also, the heap ordering of A implies that

A[⌊i/2⌋]+B[j]≤ A[i]+B[j]. If A[⌊i/2⌋]+B[j]< A[i]+B[j], then (⌊i/2⌋ , j) 6∈ X by the definitions of s and

X , whereas if A[⌊i/2⌋] +B[j] = A[i] +B[j], then (⌊i/2⌋ , j) 6∈ X by the minimality of (i, j) in X . In either

case, we see that (⌊i/2⌋ , j) has been printed. But then (i, j) must have been inserted in Q.

Now, note that A[i]+B[j] corresponds to the minimum AB-sum currently stored in Q, because Q contains

a subset of the index pairs yet to be printed. Therefore if Q[1] = (i∗, j∗), we must have A[i∗] +B[j∗] =
A[i]+B[j] = s. We may have (i∗, j∗) = (i, j) but this is not necessary. •

Algorithm 4

(Proposed by Anurag Anand)

1. Convert A and B individually to two min-heaps.

2. Store the k smallest elements of A in an array a[1 . . .k], and the k smallest elements of B in an array

b[1 . . .k]. This can be done by deletemin’s from A and B. If you want to keep the compositions of A

and B, store the deleted minimums at the empty cells created by the deletions (as in heap sort).

3. Initialize a priority queue Q by (i,1) for i = 1,2, . . . ,k. Q is ordered with respect to a[i]+b[j].

4. Repeat k times:

Let (i, j) be obtained by extractmin from Q. Print a[i]+b[j]. If j < k (or if i+ j ≤ k), insert

(i, j+1) in Q.

Exercise: Formally establish the correctness of Algorithm 4.

1

