Proof of Correctness

Since Algorithm 2 is essentially the same as Algorithm 3 but operates under an assumption on the input, let us concentrate on Algorithm 3 only. Also, we do not need to stop Algorithm 3 after it prints k sums. Let us allow it to print all the *AB*-sums (that is, run the loop until Q becomes empty).

Claim: Algorithm 3 prints the AB-sums in ascending (actually, non-decreasing) order.

Proof Suppose that at some point of time, *s* is the smallest among the sums yet to be printed. It is possible that a few instances of *s* have already been printed. But what is important is that at least one more instance of *s* remains to be printed. We prove that there exists a pair (i^*, j^*) such that $A[i^*] + B[j^*] = s$, and $Q[1] = (i^*, j^*)$.

We first show that there is an (i, j) such that A[i] + B[j] = s, and (i, j) was inserted in Q. Let

 $X = \{(i, j) | A[i] + B[j] = s, \text{ and } (i, j) \text{ has not been printed so far}\}.$

X is non-empty and so must have a minimal element (i, j). Here, the minimality of (i, j) means that for no $(i', j') \in X$, $(i', j') \neq (i, j)$, we have both $i' \leq i$ and $j' \leq j$ with at least one inequality strict. If (i, j) = (1, 1), then it has already been inserted in Q in the initialization step.

So suppose that $(i, j) \neq (1, 1)$, that is, either $i \ge 2$ or $j \ge 2$. Take the case $i \ge 2$ (the other case is analogous). We have $\lfloor i/2 \rfloor \ge 1$, that is, $(\lfloor i/2 \rfloor, j)$ is a valid index pair. Also, the heap ordering of A implies that $A[\lfloor i/2 \rfloor] + B[j] \le A[i] + B[j]$. If $A[\lfloor i/2 \rfloor] + B[j] < A[i] + B[j]$, then $(\lfloor i/2 \rfloor, j) \notin X$ by the definitions of s and X, whereas if $A[\lfloor i/2 \rfloor] + B[j] = A[i] + B[j]$, then $(\lfloor i/2 \rfloor, j) \notin X$ by the minimality of (i, j) in X. In either case, we see that $(\lfloor i/2 \rfloor, j)$ has been printed. But then (i, j) must have been inserted in Q.

Now, note that A[i] + B[j] corresponds to the minimum *AB*-sum currently stored in *Q*, because *Q* contains a subset of the index pairs yet to be printed. Therefore if $Q[1] = (i^*, j^*)$, we must have $A[i^*] + B[j^*] = A[i] + B[j] = s$. We may have $(i^*, j^*) = (i, j)$ but this is not necessary.

Algorithm 4

(Proposed by Anurag Anand)

- 1. Convert A and B individually to two min-heaps.
- 2. Store the *k* smallest elements of *A* in an array a[1...k], and the *k* smallest elements of *B* in an array b[1...k]. This can be done by *deletemin*'s from *A* and *B*. If you want to keep the compositions of *A* and *B*, store the deleted minimums at the empty cells created by the deletions (as in heap sort).
- 3. Initialize a priority queue Q by (i, 1) for i = 1, 2, ..., k. Q is ordered with respect to a[i] + b[j].
- 4. Repeat *k* times:

Let (i, j) be obtained by *extractmin* from Q. Print a[i] + b[j]. If j < k (or if $i + j \le k$), insert (i, j + 1) in Q.

Exercise: Formally establish the correctness of Algorithm 4.