
CS29002 Algorithms Laboratory

Assignment No: 12

Last date of submission: 02–November–2016

Foobarland Highway Agency (FHA) is a government organization that looks into the construction and

maintenance of highways in Foobarland which has n cities numbered 0,1,2, . . . ,n − 1. Let G = (V,E)
be an undirected graph, where V is the set of cities in Foobarland. Two cities u and v share an edge in

the graph if and only if there is a highway between the two cities. The new transport ministry notices that

not all pairs of cities are connected by paths consisting only of highways. So FHA is assigned the job of

constructing new highways so that any two cities become highway-connected (by paths, not edges).

The head office of FHA is in City 0, and the cities 1,2,3, . . . ,n−1 are arranged in an increasing sequence of

distance from City 0 (you do not need to know the exact distances for solving this problem). FHA engineers

decide to build k new highways between City 0 and Cities u1,u2, . . . ,uk with 1 6 u1 < u2 < · · ·< uk 6 n−1,

that is, to add the new edges (0,ui) to E for i = 1,2, . . . ,k, so that G becomes a connected graph. In order

to minimize the construction cost, it is required to have k as small as possible. Also the highway lengths

should be small, so u1,u2, . . . ,uk should be chosen as small as possible.

In this assignment, you help FHA engineers by providing an optimal solution for k and u1,u2, . . . ,uk.

Part 1: Write a function readgraph() to construct and return the highway graph G based upon user inputs.

The user first enters n (the number of nodes, that is, cities) and m (the number of edges, that is, highways).

The user then enters one by one the two endpoints of the m edges. It is the duty of the user to ensure that

the same edge is not added multiple times. You prepare G in an adjacency-list representation. For two

(different) cities u and v, the existence of the undirected edge (u,v) implies that v should be in the list of

neighbors of u, and u should be in the list of neighbors of v.

Part 2: Write a function BFS(G,u,visited) to implement a BFS traversal in G starting from the node u. The

visited array should be passed to the function, that is, it should not be a local array in the function. The

traversal stops as soon as the BFS queue becomes empty, even if there still remain unvisited nodes.

Part 3: Write a function checkconn(G) to check the connectivity of G. It invokes the function BFS, and

prints a message whether G is connected or disconnected by looking at the visited array after BFS returns.

Part 4: Add the minimum number k of edges of the form (0,ui), i= 1,2, . . . ,k, so that G becomes connected.

Ensure also that ui are as small as possible. Write a function buildhighways(G) to solve this problem. Notice

that k is not supplied as input to this function; it will be determined by the input graph G.

The main() function

• Prepare the graph G from user inputs by calling readgraph. Print the graph in the format shown in the

sample output.

• Assume that G is disconnected at this point. Verify this by calling checkconn.

• Call buildhighways to make G connected.

• Call checkconn again to verify that G is now connected.

Sample output

+++ n = 25

+++ m = 36

+++ Adding edges:

(2, 5) (11, 7) (3, 4) (13,12) (8,18) (8,17) (1, 4) (3, 1)

(8, 0) (5, 6) (15,14) (0,18) (8,16) (9,22) (2, 6) (14, 8)

(19, 5) (9,21) (21,22) (16,18) (24,12) (14,18) (24,13) (16,14)

(19,20) (21,23) (8,15) (23, 9) (17,18) (16, 0) (16,17) (2,20)

(23,22) (20, 6) (15,18) (0,15)

— Page 1 of 2 —

+++ The graph is:

City 0 -- 8 15 16 18

City 1 -- 3 4

City 2 -- 5 6 20

City 3 -- 1 4

City 4 -- 1 3

City 5 -- 2 6 19

City 6 -- 2 5 20

City 7 -- 11

City 8 -- 0 14 15 16 17 18

City 9 -- 21 22 23

City 10 --

City 11 -- 7

City 12 -- 13 24

City 13 -- 12 24

City 14 -- 8 15 16 18

City 15 -- 0 8 14 18

City 16 -- 0 8 14 17 18

City 17 -- 8 16 18

City 18 -- 0 8 14 15 16 17

City 19 -- 5 20

City 20 -- 2 6 19

City 21 -- 9 22 23

City 22 -- 9 21 23

City 23 -- 9 21 22

City 24 -- 12 13

+++ Not all cities are connected by highways

+++ Building highways

Between City 0 and City 1

Between City 0 and City 2

Between City 0 and City 7

Between City 0 and City 9

Between City 0 and City 10

Between City 0 and City 12

+++ All cities are connected by highways

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

