
CS29002 Algorithms Laboratory

Assignment No: 10

Last date of submission: 19–October–2016

Mr. Intermediario buys items (of a single type) from a manufacturer and sells those to a distributor. Each

item has a buying rate and a selling rate (assumed to be positive integers) on a day. These rates are available

to Mr. Intermediario for n consecutive days in two arrays B[] and S[]. Only a whole number of items can

be bought or sold. Mr. Intermediario has an initial capital C (again a positive integer). If the buying rate is

b on a day, he can buy (at most) ⌊C/b⌋ items. He cannot sell items before buying them. Buying and selling

on the same day are allowed. All the items bought on Day i must be sold on Day j for some j satisfying

0 6 i 6 j 6 n−1. Write a program to help Mr. Intermediario achieve the maximum possible profit.

Part 1: Single transaction

Suppose that Mr. Intermediario makes exactly one buying and one selling. He has to choose the days

i and j such that the quantity

⌊

C

B[i]

⌋

(

S[j]−B[i]
)

is maximized. An exhaustive search over all pairs

(i, j) satisfying 0 6 i 6 j 6 n−1 takes Θ(n2) running time.

We can do much better using a divide-and-conquer strategy. Break the set of days into two equal-

sized halves. Recursively compute the optimal profits LOPT and ROPT for the left and right halves.

It is also allowed that items are bought in the first half, and sold in the second half. The optimal way

to do this is to find Day i in the first half on which the buying rate is minimum, and to find Day j in the

second half on which the selling rate is maximum. Let LROPT denote the profit for these choices of i

and j. Then, the maximum profit of Mr. Intermediario is max(LOPT, ROPT, LROPT). This algorithm

has a running time given by T (n) = 2T (n/2)+Θ(n), where the Θ(n) effort is associated with locating

the minimum buying rate and the maximum selling rate in the two halves. By the master theorem,

T (n) = Θ(n logn). The space requirement is Θ(logn) since the depth of recursion is log2 n.

• Write a function singletrans1(B,S,n,C) to implement this divide-and-conquer algorithm.

• Write a function singletrans2(B,S,n,C) to implement a modification of the above divide-and-conquer

algorithm, achieving a running time of Θ(n). Since the recursion depth would not change, the space

requirement will remain Θ(logn).

Part 2: Multiple transactions

Now, assume that Mr. Intermediario can make buying and selling multiple times. Let t be the number

of transactions made (t = 0 is also allowed). The task of Mr. Intermediario is to choose buying days

i1, i2, . . . , it and selling days j1, j2, . . . , jt satisfying 0 6 i1 6 j1 < i2 6 j2 < i3 6 j3 < · · · < it 6 jt 6

n−1. The condition jk < ik+1 indicates that a new transaction cannot be started on a day when some

items are sold. However, transactions with ik = jk are allowed. With transactions, the available capital

of Mr. Intermediario changes. He uses his available capital to buy the maximum possible number of

items (integral numbers only). Finally, all the items bought on Day ik must be sold on Day jk.

• Write an O(n2)-time function multitrans(B,S,n,C) to maximize the final profit of Mr. Intermediario

in the case of multiple transactions. Your function may use O(n) additional space. Take a dynamic-

programming approach. For i = 0,1,2, . . . ,n−1 (in that sequence), iteratively compute the maximum

capital that Mr. Intermediario can have at the end of Day i.

— Page 1 of 2 —

The main() function

• Read n, the arrays B[] and S[], and the initial capital C from the user.

• Call singletrans1 to print an optimal single transaction.

• Call singletrans2 to print an optimal single transaction.

• Call multitrans to print a sequence of transactions maximizing the total profit.

Present the outputs in the following format.

Sample output

+++ n = 10

+++ Buying prices : 10 15 16 9 25 6 5 18 5 21

+++ Selling prices : 24 13 8 12 9 21 7 21 6 14

+++ C = 1000

+++ Single transaction: O(n log n) time

Buying date = 6, Buying rate = 5

Selling date = 7, Selling rate = 21

Maximum profit = 3200

+++ Single transaction: O(n) time

Buying date = 6, Buying rate = 5

Selling date = 7, Selling rate = 21

Maximum profit = 3200

+++ Multiple transactions

Initial capital = 1000

Buying date = 0, Buying rate = 10

Selling date = 0, Selling rate = 24

Current capital = 2400

Buying date = 3, Buying rate = 9

Selling date = 3, Selling rate = 12

Current capital = 3198

Buying date = 5, Buying rate = 6

Selling date = 5, Selling rate = 21

Current capital = 11193

Buying date = 6, Buying rate = 5

Selling date = 7, Selling rate = 21

Current capital = 47001

Buying date = 8, Buying rate = 5

Selling date = 9, Selling rate = 14

Current capital = 131601

Maximum profit = 130601

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

