
CS29002 Algorithms Laboratory

Assignment No: 6

Last date of submission: 31–August–2016

Suppose that there are n persons P1,P2, . . . ,Pn. This assignment deals with answering a couple of questions

about the relationships among these persons. Both the problems must be solved in O(n2) time. You may use

O(n) additional space if required.

Part 1: Suppose that friendship is a mutual relation, that is, for two different i and j, Pi is a friend of Pj if

and only if Pj is a friend of Pi. Also, we do not consider Pi to be a friend of Pi himself or herself. Let fi

denote the number of friends that Pi has. The sequence f1, f2, . . . , fn is called a (valid) friendship sequence.

We have fi ∈ {0,1,2, . . . ,n−1} for all i = 1,2, . . . ,n. In particular, all the fi values are O(n).

In this part, you are given a sequence f1, f2, . . . , fn of n integers with 0 6 fi 6 n− 1 for all i = 1,2, . . . ,n.

Your task is to find out whether this can be a valid friendship sequence, and if so, to construct a friendship

list that realizes this sequence. The solution is in general not unique, but it suffices to construct any solution.

Since each friendship pair is counted twice, once for each person in the pair, the sum ∑
n
i=1 fi must be even.

In the rest of this part, assume that the given input satisfies this condition.

Repeat the following steps until n reduces to zero. First, delete all the zero entries from the sequence

(because those persons do not have any friends at all), and decrement n accordingly. If n becomes zero,

return success. If not, compute k = maxn
i=1 fi. If k > n, this cannot be a valid friendship sequence, so return

failure. Otherwise, sort the sequence in decreasing (actually non-increasing) order. Let this rearranged list

be k = fi1 > fi2 > · · · > fin > 0. Choose Pi2 ,Pi3 , . . . ,Pik+1
as friends of Pi1 . After this, the remaining counts

of friends for these k+1 persons become 0, fi2 −1, fi3 −1, . . . , fik+1
−1. Update the friendship count list to

0, fi2 −1, fi3 −1, . . . , fik+1
−1, fik+2

, fik+3
, . . . , fin , and go back to the top of the loop. Here is an example.

P3 P5 P2 P1 P4 P5 P2 P4

3 3 2 1

0 2 01 1

1 2 1 1

0 0 0

(a) Iteration 1 (b) Iteration 2

It can be proved that this algorithm works, that is, outputs a feasible solution whenever the input friendship

sequence is valid. Let us now look into some implementation details. The friendship sequence is stored

in an array A of (i, fi) pairs. The elements of A are relocated during deletion of zero entries and during

sorting, so you need to maintain the index i of the person Pi along with the current friendship count fi. The

deletion of the zero entries from A can be done in place in O(n) time by relocating the non-zero entries at

the beginning of the array. The maximum k can also be computed in O(n) time. If 0 < k < n, we need to

sort A with respect to the second component. Since the maximum value of this component is O(n), we can

use counting sort which finishes in O(n+ k), that is, O(n) time. The friendship pairs added after the sorting

are stored in a static two-dimensional array M which is initialized to zero before the loop. Whenever Pi is

made a friend of Pj, set M[i][j] = M[j][i] = 1 (so 1 means friend, 0 means not friend). Since each iteration

makes at least one fi zero, the total number of iterations is at most n, and the overall running time is O(n2).

Write a function friendship(A,M,n) to implement the above algorithm. The function should return success

or failure (that is, a Boolean value which may be encoded as an integer).

Part 2: Now, suppose that we count the handshakes done among the n persons. Handshaking is again a

mutual gesture. Let hi denote the count of handshakes made by Pi with all of the n−1 other persons. Let us

call h1,h2, . . . ,hn a (valid) handshake sequence. Unlike the friendship count fi, we cannot supply any upper

bound on hi. In particular, we cannot guarantee that hi = O(n) for all i. However, the sum ∑
n
i=1 hi must be

even since each handshake is counted twice in the sum. Henceforth assume that this condition holds.

In this part, you are given a sequence h1,h2, . . . ,hn of non-negative integers. Your task is to confirm whether

this is a valid handshake sequence, and if so, to determine how such a sequence can be realized. Again, the

solution need not be unique, but we are done if we can come up with any correct solution.

— Page 1 of 2 —

Develop an O(n2)-time algorithm based on the following result, the correctness of which can be established.

Let the given sequence in sorted order be hi1 > hi2 > · · · > hin > 0 for n > 4. Then, this sequence is a valid

handshake sequence if and only if the sequence hi1 −hin ,hi2 ,hi3 , . . . ,hin−1
,0 is a valid handshake sequence.

The special cases n = 1,2,3 (number of non-zero entries remaining in the sequence) are not handled by the

above result. For example, investigate what happens if n = 3, and we attempt to apply the result on the three

remaining counts 7,6,5. This sequence has a unique solution of 4,3,2 handshakes for the three pairs. Also

note that the solution for the sequence 7,2,1 is 4,3,−2 handshakes for the three pairs, but a negative number

of handshakes makes no sense. The iterative procedure eventually ends up in these boundary cases, so you

need to work out how to handle them.

Write a function handshake(A,M,n) to implement your algorithm, and to return success or failure.

The main() function:

• Read n from the user. Then, for i = 1,2, . . . ,n, read fi from the user and store (i, fi) in A. You may

assume that the user ensures that the sum ∑
n
i=1 fi is even. Initialize M to an n×n array of zeros.

• Call friendship(A,M,n). If the function returns success, print M in a format similar to that shown in

the sample output.

• For i = 1,2, . . . ,n, read hi from the user and store (i,hi) in A. You may assume that the user ensures

that the sum ∑
n
i=1 hi is even. Reuse the two-dimensional array M.

• Call handshake(A,M,n). If the function returns success, print M.

Sample output

n = 10

Sequence: 5 5 7 3 2 6 7 0 4 3

1 2 3 4 5 6 7 8 9 10 Sum

+---+

1 | 1 1 1 1 1 | 5

2 | 1 1 1 1 1 | 5

3 | 1 1 1 1 1 1 1 | 7

4 | 1 1 1 | 3

5 | 1 1 | 2

6 | 1 1 1 1 1 1 | 6

7 | 1 1 1 1 1 1 1 | 7

8 | | 0

9 | 1 1 1 1 | 4

10 | 1 1 1 | 3

+---+

Sum 5 5 7 3 2 6 7 0 4 3

Sequence: 9 57 17 34 89 10 50 7 35 94

1 2 3 4 5 6 7 8 9 10 Sum

+---+

1 | 9 | 9

2 | 28 18 11 | 57

3 | 17 | 17

4 | 34 | 34

5 | 9 28 17 35 | 89

6 | 10 | 10

7 | 18 32 | 50

8 | 7 | 7

9 | 35 | 35

10 | 11 34 10 32 7 | 94

+---+

Sum 9 57 17 34 89 10 50 7 35 94

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

