
CS29002 Algorithms Laboratory

Assignment No: 5

Last date of submission: 24–August–2016

Let us consider hash-based storage of multi-dimensional data. Specifically, each item we want to store in

our hash table T is a pair (x,y) of two strings. We call each component (x or y) an attribute of the data item.

Viewed as an abstract data type (ADT), we want the following operations on the hashtable ADT.

Table 1: ADT functions for attribute-based hash tables hashtable
inittable(S) Return an empty hash table with S slots.

searchpair(T,(x,y)) Check and print whether (x,y) is stored in T . No return value.

searchattr(T,z,a) Attribute-based search. No return value.

If a = 1, print all the strings y such that (z,y) is stored in T .

If a = 2, print all the strings x such that (x,z) is stored in T .

insertpair(T,(x,y)) Insert the pair (x,y) in T , and return the updated table.

deletepair(T,(x,y)) Delete the pair (x,y) from T , and return the updated table.

Assume that each attribute is of length 6 20. Use the following data type to store an attribute pair (x,y).

typedef struct {

char x[21], y[21]; /* Pair of NULL-terminated strings */

} pair;

Pass such a pair as the second argument of searchpair, insertpair, and deletepair. The second argument of

searchattr is a single string.

Write two different programs openaddr.c(pp) and chaining.c(pp) for two implementations of the hashtable

ADT. The first program is based on open addressing with linear probing, and the second on chaining. The

prototypes of the ADT functions must exactly match those given in Table 1. You may, however, use any

number of helping functions with prototypes suited to your personal convenience.

Program 1: openaddr.c

We need to hash strings to array indices. Let S denote the size of the arrays we use in our hash tables. The

hash HS(z) of a string z = a0a1a2 . . .al−1 of length l is an integer in the range 0,1,2, . . . ,S−1. We assume

that z is a string of standard 7-bit ASCII characters. We treat z as an integer in base 27 = 128, where each

character ai is identified with its ASCII value. The remainder of this number upon division by S is the hash

HS(z) of z. The hash of the empty string (the string of length zero) is zero. For l > 1, we have

HS(a0a1a2 . . .al−1) = 128×HS(a0a1a2 . . .al−2)+ASCII(al−1) (mod S).

The number corresponding to z may be too large to fit 32-bit integers, so this number is not explicitly

computed. Instead, compute the hash of z iteratively with all intermediate results reduced modulo S. Pass

both z and S as parameters to the hash function.

The hash table T consists of two arrays A and B. A stores the first attribute x, and B stores the second attribute

y of a data item (x,y). Independent storage of the two attributes introduces a problem: the association

between the two attributes of a data item is lost. This means that if (x1,y1) and (x2,y2) are two items

inserted in T , the table would confirm the presence of the items (x1,y2) and (x2,y1) which are not inserted

in T . In order to overcome this problem, we maintain an association array against each attribute. Let

(x,y1),(x,y2), . . . ,(x,yk) be all the items inserted in T with first attribute x. Suppose that x is inserted at

index (slot) i in A, and y1,y2, . . . ,yk at indices j1, j2, . . . , jk in B. The index A[i] stores the indices j1, j2, . . . , jk
along with x. Likewise, if (x1,y),(x2,y), . . . ,(xl,y) are inserted in T for a fixed y with x1,x2, . . . ,xl inserted

at indices i1, i2, . . . , il in A and y inserted at index j in B, then B[j] stores y along with the indices i1, i2, . . . , il .

For simplicity, we assume that an attribute can be associated with at most ten attributes of the other type.

Therefore the following data type can be used for each slot in the arrays.

— Page 1 of 5 —

typedef struct {

char att[21]; /* The attribute name: a NULL-terminated string */

int nassoc; /* Number of attribute associations in the other table */

int assoc[10]; /* Array of indices of the associated attributes */

} htnode;

An attribute-based hash table storing the six pairs (Green, Table), (Green, Apple), (Red, Table), (Red, Rose),

(Red, Tea), and (Purple, Rose) is shown in Figure 1. The nassoc field appears within parentheses. Suppose

that the strings Rose and Tea both hash to the same index 2. Let us use linear probing, that is, the string Tea

is relocated to index 3. The association indices are the actual indices where the strings reside, not the default

hash values.

Figure 1: Attribute-based hash table with open addressing and linear probing

0

1

2

3

4

5

6

0

1

2

3

4

5

6

3, 6
Rose (2)

Array BArray A

Red (3)

Purple (1)
2

Apple (1)

1, 3
Table (2)

0, 5

0, 2, 3

1

Green (2)

Tea (1)
3

T

Let S denote the size of the two arrays A and B of htnode structures. Assume that S is large enough to store

all the data items that the user would insert. Therefore you do not need to check whether the table is full, or

to expand the table. S is however needed for hash and index computations. You may use the following data

type for the hashtable ADT.

typedef struct {

int S; /* Size of A and B */

htnode *A, *B; /* Attribute arrays */

} hashtable;

Searching, insertion and deletion algorithms are straightforward. Use linear probing in both A and B to

resolve collisions. Appropriately maintain the association lists in both the arrays. There is no necessity to

keep these lists sorted. Make linear searches in the lists for searching, insertion and deletion. An attribute-

based search prints all the strings stored in the other array at the indices found in the association list.

Use a special string (like EMPTY) to indicate an empty slot in the arrays. Use another special string (like

DELETED) to designate a slot made empty after deletion. Assume that the strings EMPTY and DELETED

are not valid attributes in any data item. Also note that you delete a string from an array only when its

association count drops to zero. For example, deletion of only (Red, Rose) and (Red, Table) in the example

of Figure 1 still leaves the pair (Red, Tea) in the table, and so Red should not be deleted yet from A.

The main() function starts by reading S from the user and initializing T to an empty hash table. It then enters

a loop, asking the user what to do. The user first enters an integer with the interpretation that 0 means break

the loop, 1 means search on the first attribute, 2 means search on the second attribute, 3 means a search for

a pair (x,y), 4 means insertion of a pair (x,y) in T , and 5 means deletion of a pair (x,y) from T . Depending

upon the choice of the user, one or two strings (x and/or y) is/are additionally entered by the user. The ADT

calls are made to print the results and other diagnostic messages (see the sample output).

The only functions called by your main() function must be the ADT functions. Your helping functions may

be called by the ADT functions, but not directly by the main() function.

— Page 2 of 5 —

Sample output

S = 11

+++ Enter choice: 4 Green Apple

hash = (3,10), insertion at (3,10)

+++ Enter choice: 4 Yellow Pen

hash = (7,7), insertion at (7,7)

+++ Enter choice: 4 Red Shirt

hash = (7,4), insertion at (8,4)

+++ Enter choice: 4 Brown Cake

hash = (10,6), insertion at (10,6)

+++ Enter choice: 4 Red Table

hash = (7,0), insertion at (8,0)

+++ Enter choice: 4 Blue Sky

hash = (8,9), insertion at (9,9)

+++ Enter choice: 4 Black Dog

hash = (5,10), insertion at (5,1)

+++ Enter choice: 4 Green Tea

hash = (3,3), insertion at (3,3)

+++ Enter choice: 4 Black Sea

hash = (5,9), insertion at (5,2)

+++ Enter choice: 4 Blue Sea

hash = (8,9), insertion at (9,2)

+++ Enter choice: 4 Yellow Shirt

hash = (7,4), insertion at (7,4)

+++ Enter choice: 4 Brown Table

hash = (10,0), insertion at (10,0)

+++ Enter choice: 4 Black Shirt

hash = (5,4), insertion at (5,4)

+++ Enter choice: 4 Yellow Table

hash = (7,0), insertion at (7,0)

+++ Enter choice: 4 Purple Sky

hash = (2,9), insertion at (2,9)

+++ Enter choice: 4 Gray Shirt

hash = (5,4), insertion at (6,4)

+++ Enter choice: 4 Red Pen

hash = (7,7), insertion at (8,7)

+++ Enter choice: 1 Yellow

(Yellow,-) is associated with: Pen Shirt Table

+++ Enter choice: 1 White

(White,-) is associated with:

+++ Enter choice: 1 Shirt

(Shirt,-) is associated with:

+++ Enter choice: 2 Shirt

(-,Shirt) is associated with: Red Yellow Black Gray

+++ Enter choice: 2 Jeans

(-,Jeans) is associated with:

+++ Enter choice: 2 Red

(-,Red) is associated with:

+++ Enter choice: 3 Black Dog

(Black,Dog) found at (5,1)

+++ Enter choice: 3 Black Cat

(Black,Cat) not found

+++ Enter choice: 2 Sky

(-,Sky) is associated with: Blue Purple

+++ Enter choice: 5 Purple Sky

hash = (2,9), deletion at (2,9)

+++ Enter choice: 2 Sky

(-,Sky) is associated with: Blue

+++ Enter choice: 5 Blue Sky

hash = (8,9), deletion at (9,9)

+++ Enter choice: 2 Sky

(-,Sky) is associated with:

+++ Enter choice: 3 Green Apple

(Green,Apple) found at (3,10)

+++ Enter choice: 5 Green Apple

hash = (3,10), deletion at (3,10)

+++ Enter choice: 3 Green Apple

(Green,Apple) not found

+++ Enter choice: 5 Black Sea

hash = (5,9), deletion at (5,2)

+++ Enter choice: 2 Sea

(-,Sea) is associated with: Blue

+++ Enter choice: 0

— Page 3 of 5 —

Program 2: chaining.c

In the chaining mode, multiple attributes hashing to the same index are inserted at the same slot. Therefore

maintaining the array indices of associated attributes is not guaranteed to resolve all ambiguities. We instead

use node pointers to point to associated nodes in the other array. Figure 2 illustrates this idea.

Figure 2: Attribute-based hash table with chaining

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Array BArray A

Green (2)

Red (3)

Purple (1)

Tea (1)Rose (2)

Table (2)

Apple (1)

T

In the chaining mode, you maintain a linked list of nodes inserted at each slot (index). So the data type

htnode should have a self-referencing pointer. Moreover, you need to replace the association array of

indices by an array of node pointers. Finally, the hash table T consists of two arrays A and B of pointers to

modified htnode structures, each of size S.

typedef struct _htnode {

char att[21]; /* The attribute name: a NULL-terminated string */

int nassoc; /* Number of attribute associations */

struct _htnode *assoc[10]; /* Array of pointers to associated attributes */

struct _htnode *next; /* Next pointer for maintaining the linked list */

} htnode;

typedef struct {

int S; /* Size of A and B */

htnode **A, **B; /* Arrays of pointers to head lists of nodes */

} hashtable;

A pair (x,y) with i = HS(x) and j = HS(y) resides in the table if and only if all of the following four

conditions hold: (1) x is stored in the linked list headed by A[i], (2) y is stored in the linked list headed by

B[j], (3) a pointer to the node storing y appears in the association list of x, and (4) a pointer to the node

storing x appears in the association list of y. You do not need to keep the linked lists and the association

lists sorted. Make linear searches in them. Delete a node only when its association count drops to zero. The

special strings EMPTY and DELETED are not needed in this implementation.

In order to hash strings, this program chaining.c should use the same function HS(z) introduced in connection

with openaddr.c. The main() function written for openaddr.c must work for chaining.c without any changes.

Note once again that your main() function is allowed to make calls of only the ADT functions, but not of

any helping function that you may implement.

Sample output

S = 11

— Page 4 of 5 —

+++ Enter choice: 4 Green Apple

Insertion at (3,10)

+++ Enter choice: 4 Yellow Pen

Insertion at (7,7)

+++ Enter choice: 4 Red Shirt

Insertion at (7,4)

+++ Enter choice: 4 Brown Cake

Insertion at (10,6)

+++ Enter choice: 4 Red Table

Insertion at (7,0)

+++ Enter choice: 4 Blue Sky

Insertion at (8,9)

+++ Enter choice: 4 Black Dog

Insertion at (5,10)

+++ Enter choice: 4 Green Tea

Insertion at (3,3)

+++ Enter choice: 4 Black Sea

Insertion at (5,9)

+++ Enter choice: 4 Blue Sea

Insertion at (8,9)

+++ Enter choice: 4 Yellow Shirt

Insertion at (7,4)

+++ Enter choice: 4 Brown Table

Insertion at (10,0)

+++ Enter choice: 4 Black Shirt

Insertion at (5,4)

+++ Enter choice: 4 Yellow Table

Insertion at (7,0)

+++ Enter choice: 4 Purple Sky

Insertion at (2,9)

+++ Enter choice: 4 Gray Shirt

Insertion at (5,4)

+++ Enter choice: 4 Red Pen

Insertion at (7,7)

+++ Enter choice: 1 Yellow

(Yellow,-) is associated with: Pen Shirt Table

+++ Enter choice: 1 White

(White,-) is associated with:

+++ Enter choice: 1 Shirt

(Shirt,-) is associated with:

+++ Enter choice: 2 Shirt

(-,Shirt) is associated with: Red Yellow Black Gray

+++ Enter choice: 2 Jeans

(-,Jeans) is associated with:

+++ Enter choice: 2 Red

(-,Red) is associated with:

+++ Enter choice: 3 Black Dog

(Black,Dog) found at (5,10)

+++ Enter choice: 3 Black Cat

(Black,Cat) not found

+++ Enter choice: 2 Sky

(-,Sky) is associated with: Blue Purple

+++ Enter choice: 5 Purple Sky

Deletion at (2,9)

+++ Enter choice: 2 Sky

(-,Sky) is associated with: Blue

+++ Enter choice: 5 Blue Sky

Deletion at (8,9)

+++ Enter choice: 2 Sky

(-,Sky) is associated with:

+++ Enter choice: 3 Green Apple

(Green,Apple) found at (3,10)

+++ Enter choice: 5 Green Apple

Deletion at (3,10)

+++ Enter choice: 3 Green Apple

(Green,Apple) not found

+++ Enter choice: 5 Black Sea

Deletion at (5,9)

+++ Enter choice: 2 Sea

(-,Sea) is associated with: Blue

+++ Enter choice: 0

Submit two C/C++ source files openaddr.c(pp) and chaining.c(pp).
Do not use global/static variables. Do not make C++ STL calls.

— Page 5 of 5 —

