
CS29002 Algorithms Laboratory

Assignment No: 4

Last date of submission: 17–August–2016

You are given two arrays A and B storing m and n integers. Both A and B are unsorted. An AB-sum is a sum

of the form A[i] +B[j] for some (valid) indices i and j. You are also given a positive integer k satisfying

k 6 m/ logm and k 6 n/ logn. Your task is to find out the k smallest AB-sums. Notice that it is not important

which i and which j correspond to an AB-sum. In particular, if you permute A and B, these indices change,

but the k smallest AB-sums remain the same. However, if the same AB-sum is realized by two or more

different index pairs (for the same permutations of A and B), these sums are to be reported separately.

A naive idea is to store the mn AB-sums in an array S, sort S, and report the k smallest elements in the sorted

S. This requires O(mn log(mn)) time and O(mn) space. Using min-heaps, you can do much better than this.

Algorithm 1

Convert S to a min-heap. For k times, print the minimum followed by deleting the minimum. This improves

the running time to O(mn+ k log(mn)) which is O(mn). However, the space requirement remains the same.

Write a function buildheap(S, l) to convert an array S of l integers to a min-heap. Write another function

extractmin(S, l) to delete and return the minimum element from a heap S of size l. Finally, write a function

method1(A,B,m,n,k) to print the k smallest AB-sums by calling the above two functions.

Algorithm 2

Now, we design an algorithm which runs in O(m+n) time and uses only O(k) extra space. We first convert

A and B to two min-heaps. Assume that indexing in the arrays A and B is one-based, and A[i] and B[j] refer

to the indices i and j after these arrays have been converted to min-heaps. Let a1,a2, . . . ,ak be the k smallest

elements in A, and b1,b2, . . . ,bk the k smallest elements in B. Since A and B are not sorted (they are only

converted to min-heaps), we cannot guarantee ai = A[i] or b j = B[j] for i, j ∈ {1,2, . . . ,k}. By k minimum

extractions, we can obtain these 2k values ai and b j, but we will not do that. Indeed, the k smallest AB-sums

are the k smallest elements of T = {ai + b j | 1 6 i 6 k, 1 6 j 6 k, i+ j 6 k+ 1}. The size of T is Θ(k2).
Given the bounds on k, we cannot explicitly construct T .

Let us use a priority queue Q for storing pairs (i, j) of indices satisfying 1 6 i 6 m and 1 6 j 6 n. Q is ordered

(heap ordering) with respect to the sum A[i]+B[j]. Given i and j, we can easily compute A[i]+B[j], so this

sum need not be explicitly stored in Q. Since A and B are min-heaps, we have a1 = A[1] and b1 = B[1], and

a1 + b1 = A[1] +B[1] is the smallest AB-sum. So we first insert (1,1) to Q. Then, we enter a loop which

runs until k sums are printed. Let (i, j) be the minimum (with respect to A[i]+B[j]) stored in Q. We print

A[i] +B[j] (conditionally; see below), and delete (i, j) from Q. We then insert the four index pairs (2i, j),
(2i+1, j), (i,2 j), and (i,2 j+1) in Q (check, before insertion, that 2i,2i+1 6 m and 2 j,2 j+1 6 n).

In order to convert A and B to min-heaps, use the same function buildheap written for Algorithm 1. Write a

function insertQ(Q, l,(i, j)) to insert a pair (i, j) of indices to Q of size l. Also write a function extractQ(Q, l)
to delete and return the pair corresponding to the minimum stored in Q of size l. You may define a data

type indexpair comprising two integer elements. Finally, write a function method2(A,B,m,n,k) to print the

k smallest AB-sums using Algorithm 2.

This function should assume that the k smallest AB-sums are distinct from one another (see Algorithm 3

why this assumption is necessary). This means that you remember the last sum printed, and do not print the

same sum multiple times. Stop when you have printed exactly k distinct sums. When you do not print a

duplicate sum for an index pair (i, j), do not also insert the indices (2i, j), (2i+1, j), (i,2 j), and (i,2 j+1)
to Q (but delete (i, j) from Q anyway). This will guarantee that at most 8k+ 1 index pairs are inserted in

Q, so its size remains O(k), that is, insertion and deletion in Q can be done in O(logk) time, and the total

effort associated with managing Q is O(k logk) which is O(m+n). Make sure that the priority queue Q has

enough memory to store 8k+1 index pairs.

— Page 1 of 3 —

Algorithm 3

Let us lift the assumption that the k smallest AB-sums are distinct. Algorithm 2 now faces a subtle problem.

Let A[1] +B[1] = 50, A[1] +B[2] = A[2] +B[1] = 60, A[2] +B[2] = 70, and A[3] +B[2] = 80 be the five

smallest AB-sums. So the printing should be 50,60,60,70,80, . . . , but Algorithm 2 prints 50,60,70,80,
Two 60’s must be printed, since this sum is realized by two different (i, j) pairs. If you do not remove the

duplicates during printing, you get another faulty output 50,60,60,70,70,80, The second printing of 70

is because of the fact that the pair (2,2) was inserted twice in Q, once after printing A[1]+B[2] (so (2,2) is

now (2i, j)), and a second time after printing A[2]+B[1] (so (2,2) is now (i,2 j)). You should print a sum

multiple times if and only if it is realized by multiple index pairs, but not because of the insertion of the

same pair multiple times in the queue.

Propose a remedy of this problem. You have to avoid duplicate insertions of the same index pairs. In order

to maintain the overall running time at O(m+ n), the effort to avoid each duplicate insertion must take at

most O(logk) time. A search in Q may take Θ(k) time (heaps are not suitable for efficient searching of a

general element). Maintaining a height-balanced tree on inserted index pairs is too much overhead (at least

from a coding perspective). So make the assumption that each AB-sum can be realized by only a constant

number of index pairs, and suggest and implement a simpler solution. You may use O(k) extra space (in

addition to the space needed by Q).

Write a function method3(A,B,m,n,k) to print the k smallest AB-sums using Algorithm 3. Since A and B are

already converted to min-heaps by method2(), you do not need to call buildheap() again from method3().

The main() function:

• Read m, the elements of A, n, the elements of B, and k from the user. Assume that the user enters such

elements of A and B that there are no repetitions in the k smallest AB-sums.

• Print the k smallest AB-sums by calling method1(A,B,m,n,k). Then, print the k smallest AB-sums by

calling method2(A,B,m,n,k).

• The user then re-enters m and n elements of A and B (m,n as above), this time without the restriction

of no duplicates in the k smallest AB-sums. The value of k also remains the same as before.

• Print the k smallest AB-sums by calling method1(A,B,m,n,k). Then, print the k smallest AB-sums by

calling method3(A,B,m,n,k).

Sample output

m = 64

+++ Array A:

647 225 200 820 789 338 72 274 407 577 306 167 928 40 417 86 751 384 697 144

137 823 241 986 665 468 225 121 372 143 86 737 86 4 557 874 341 628 148 748

923 173 633 852 212 50 656 681 153 353 824 8 176 783 993 559 970 936 399 61

797 203 797 882

n = 60

+++ Array B:

206 354 757 547 700 623 14 623 514 646 194 444 414 849 125 566 202 948 292 96

732 285 374 702 940 772 762 737 974 559 620 898 631 96 445 331 437 177 672 951

822 866 395 955 715 520 240 636 187 532 731 637 535 823 339 475 314 819 931 7

k = 10

+++ Method 1:

11 15 18 22 47 54 57 64 68 75

+++ Method 2:

11 = A[1] + B[1] = 4 + 7

15 = A[3] + B[1] = 8 + 7

18 = A[1] + B[3] = 4 + 14

22 = A[3] + B[3] = 8 + 14

47 = A[7] + B[1] = 40 + 7

54 = A[7] + B[3] = 40 + 14

— Page 2 of 3 —

57 = A[2] + B[1] = 50 + 7

64 = A[2] + B[3] = 50 + 14

68 = A[15] + B[1] = 61 + 7

75 = A[15] + B[3] = 61 + 14

+++ Re-reading arrays

+++ Array A:

304 530 283 99 580 567 424 995 790 467 919 332 907 40 812 503 540 613 895 512

320 550 174 859 780 702 492 196 894 261 16 916 510 298 15 808 864 438 804 373

623 442 704 249 481 516 751 21 847 646 251 167 196 425 744 695 845 236 609 458

216 624 374 725

+++ Array B:

640 107 252 223 263 774 595 885 934 300 852 416 534 603 155 382 968 125 267 882

268 12 296 113 247 904 570 462 247 662 905 886 487 876 827 749 650 142 353 585

160 205 719 693 526 592 793 494 435 61 96 702 72 391 814 37 296 103 499 261

+++ Method 1:

27 28 33 52 52 53 58 76 77 77

+++ Method 3:

27 = A[1] + B[1] = 15 + 12

28 = A[3] + B[1] = 16 + 12

33 = A[6] + B[1] = 21 + 12

52 = A[7] + B[1] = 40 + 12

52 = A[1] + B[3] = 15 + 37

53 = A[3] + B[3] = 16 + 37

58 = A[6] + B[3] = 21 + 37

76 = A[1] + B[6] = 15 + 61

77 = A[3] + B[6] = 16 + 61

77 = A[7] + B[3] = 40 + 37

Submit a single C/C++ source file. Do not use global/static variables.

Do not invoke heap functions from C++ STL.

— Page 3 of 3 —

