
CS29002 Algorithms Laboratory

Assignment No: 3

Last date of submission: 10–August–2016

Let T be a binary search tree (BST) storing integer-valued keys. For any node v, the notation |v| stands

for the size of (that is, the number of nodes including v in) the subtree rooted at v. Let left(v) and right(v)
denote the left and right children of v, so |left(v)| and |right(v)| are the sizes of the two subtrees of v. We

have |left(v)| = 0 (or |right(v)| = 0) if v does not have a left (or right) child. If r is the root of T , we also

denote |T |= |r|.

A BST T is called perfectly balanced if for every node v in T , we have |left(v)| − |right(v)| ∈ {0,1}. Let

us now relax this very strict requirement of perfect balance, and attempt to maintain the property that no

subtree of a node v should contain less than one-third and more than two-thirds of the nodes of the tree

rooted at v. More precisely, for every node v, we would like to maintain

|left(v)| 6
2

3
|v|, and |right(v)| 6

2

3
|v|. (1)

Height-balanced trees introduced in the class store extra information at every node (color in red-black trees,

and balance factor in AVL trees). Now, we will manage without storing the subtree size at every node. Each

node would store only an integer key, and three pointers (left, right, and parent). Parent pointers can be

avoided by using the recursion stack. For simplicity, you are allowed to use parent pointers. We externally

maintain two counts: n = |T |, and m (a maximum value of n, needed during deletion). In short, the tree is

specified by T (a pointer to the root node), and the two counts n and m.

The tree uses standard BST insertion and deletion procedures with the exception that from time to time (but

not during every insert/delete), it perfectly balances certain subtrees for restoring the conditions (1).

Part 1: Write functions for performing the following standard operations on BSTs. A node is passed to a

function by passing a pointer to it. The running time of each of these functions should be linear in the size

of the input tree or subtree.

– size(u) to compute and return the size |u| of the subtree rooted at the node u of T .

– height(T) to compute and return the height of T .

– inorder(T) to print the inorder listing of the keys stored in T .

– destroy(v) to free the memory allocated to the nodes of the subtree rooted at v.

Part 2: Write a function rebuild(v,s) to perfectly balance the subtree rooted at v. The size |v| of the subtree

is s, and is assumed to be known beforehand. Use a local array A[] to store the sorted sequence of the keys

stored in the subtree. The subtree is then destroyed. A perfectly balanced BST is then prepared from the

sorted array A[]. For this, the median is placed at the root of the tree, and the left and right subtrees are built

recursively. The function should return a pointer to the root of the new balanced tree. You may write one or

more additional functions that are called by rebuild().

Part 3: Write a function insertKey(T,x,n,m) in order to insert a key x to a tree T . If insertion is successful,

the count n = |T | increases by one. The maximum count m may also change during insertion. So you should

pass n and m (pointers to them actually) to the function. A pointer to the root of the tree after insertion is

to be returned. You may pass an additional flag as a directive whether or not to print a diagnostic message

about rebuilding (see main()).

The insertion algorithm first inserts x in T using the standard BST insertion procedure. That is, x is searched

in T . If it is already present, the old tree is returned. Otherwise, x is inserted at a new leaf node; call it l.

Increment n, and if n exceeds m, set m to n. The insertion may violate (one of) the conditions (1). Since we

have not maintained the size information at the nodes, we check for the validity of an alternative condition:

depth(l) 6 1+
⌊

log3/2 |T |
⌋

. (2)

— Page 1 of 3 —

Here, depth(l) is the length of the path from the root (call it r) to l. This must be the new height of the tree,

since the tree was height-balanced before insertion. This is to be computed by maintaining a counter during

the BST insertion, not by calling height(T). The new condition (2) is loosely related (but not equivalent) to

the original conditions (1). If the depth check fails, we follow the parent pointers from l to r. Let v be the

first (that is, deepest) node we encounter on the upward path, at which one of the conditions (1) is violated

(we must have v 6= l, since a leaf is always balanced). Let s = |v|. The subtree rooted at v is replaced by a

perfectly balanced tree using the function rebuild() of Part 2.

The following figure demonstrates the working of the insertion procedure. This corresponds to the example

given in the sample output. The insertion path is shown by blue arrows. 74 is inserted at depth 8, whereas

1+⌊log3/2 17⌋= 1+⌊6.987563 . . .⌋= 7. We move up the tree (red arrows), and at node 70 detect a violation

of (1) (see Part (a) of the figure). Rebuilding the subtree rooted at 70 gives the tree of Part (b). Notice that

the tree is unbalanced under the strict conditions (1), both before and after the rebuilding. But this is not a

problem, since the eventual goal is to produce a height-balanced tree, and the condition (2) ensures a height

of at most 1+ ⌊1.71log2 |T |⌋.

70

90

98

75

74

11

234

29 66

53

28 36

26 47

78

81

11

234

29

53

28 36

26 47

66

78

74

70 75 81 98

90

u w

v

l

r

(a) Before rebuilding (b) After rebuilding (c) Size calculations

Insertion including rebuilding must run in O(height(T)+ s) time. When the upward movement from l to r

is at a node v, the size of one of its subtrees (rooted at w, the previous node on the l-to-r path) is known. We

get the size of the other subtree by calling size(u) at the sibling node u of w. We have |v| = 1+ |u|+ |w|.
Part (c) of the above figure demonstrates this incremental size calculation during the upward walk.

Part 4: Write a function deleteKey(T,x,n,m) to delete a key x from T . The counts n and m are as during

insertion. You may pass an additional flag to optionally print whether rebuilding is done or not (see main()).
First, delete x from T following the standard BST deletion procedure. If deletion is successful (x was present

in T), decrement n, and check for the condition

n >
2

3
m. (3)

It this condition is not satisfied, the entire tree T is rebuilt, that is, converted to a perfectly balanced tree by

using the function rebuild() (with the root of T is passed as v). After this rebuilding, m is set to n.

The main() function:

• Create an initially empty BST T . Read a small (positive) integer nsml from the user.

• Read nsml keys from the user, and insert the keys one by one to T . After each insertion, print the

height and the inorder listing of T . Indicate whether a subtree is rebuilt during an insertion. If so,

print the size of the subtree rebuilt.

• Read nsml keys from the user, and delete the keys one by one from T . After each deletion, print the

height and the inorder listing of T . Indicate whether T is rebuilt during a deletion.

• Destroy T to an empty tree.

— Page 2 of 3 —

• Read a large integer nins (like a few thousands) from the user. Insert the integers 1,2,3, . . . ,nins one

by one to T . Do not print T or the rebuilding message after each insertion. Instead print only the

height of T after every hundred insertions.

• Read a large integer ndel (meaningfully, 6 nins) from the user. Delete the integers 1,2,3, . . . ,ndel

one by one from T . Do not print T or the rebuilding message after each deletion. Instead print only

the height of T after every hundred deletions.

Sample output: In the sample output below, [R s] indicates that a rebuilding of a subtree of size s was

done. Absence of this text implies that no rebuilding was necessary.

nsml = 20

+++ insert(11): Height = 0: 11

+++ insert(23): Height = 1: 11 23

+++ insert(53): Height = 2: 11 23 53

+++ insert(29): Height = 3: 11 23 29 53

+++ insert(66): Height = 3: 11 23 29 53 66

+++ insert(4): Height = 3: 4 11 23 29 53 66

+++ insert(70): Height = 4: 4 11 23 29 53 66 70

+++ insert(36): Height = 4: 4 11 23 29 36 53 66 70

+++ insert(47): Height = 5: 4 11 23 29 36 47 53 66 70

+++ insert(90): Height = 5: 4 11 23 29 36 47 53 66 70 90

+++ insert(78): Height = 6: 4 11 23 29 36 47 53 66 70 78 90

+++ insert(28): Height = 6: 4 11 23 28 29 36 47 53 66 70 78 90

+++ insert(26): Height = 6: 4 11 23 26 28 29 36 47 53 66 70 78 90

+++ insert(75): Height = 7: 4 11 23 26 28 29 36 47 53 66 70 75 78 90

+++ insert(90): Height = 7: 4 11 23 26 28 29 36 47 53 66 70 75 78 90

+++ insert(98): Height = 7: 4 11 23 26 28 29 36 47 53 66 70 75 78 90 98

+++ insert(81): Height = 7: 4 11 23 26 28 29 36 47 53 66 70 75 78 81 90 98

+++ insert(74): [R 7] Height = 6: 4 11 23 26 28 29 36 47 53 66 70 74 75 78 81 90 98

+++ insert(4): Height = 6: 4 11 23 26 28 29 36 47 53 66 70 74 75 78 81 90 98

+++ insert(89): Height = 7: 4 11 23 26 28 29 36 47 53 66 70 74 75 78 81 89 90 98

+++ delete(23): Height = 6: 4 11 26 28 29 36 47 53 66 70 74 75 78 81 89 90 98

+++ delete(4): Height = 6: 11 26 28 29 36 47 53 66 70 74 75 78 81 89 90 98

+++ delete(89): Height = 5: 11 26 28 29 36 47 53 66 70 74 75 78 81 90 98

+++ delete(90): Height = 5: 11 26 28 29 36 47 53 66 70 74 75 78 81 98

+++ delete(26): Height = 5: 11 28 29 36 47 53 66 70 74 75 78 81 98

+++ delete(74): Height = 5: 11 28 29 36 47 53 66 70 75 78 81 98

+++ delete(4): Height = 5: 11 28 29 36 47 53 66 70 75 78 81 98

+++ delete(78): [R 11] Height = 3: 11 28 29 36 47 53 66 70 75 81 98

+++ delete(66): Height = 3: 11 28 29 36 47 53 70 75 81 98

+++ delete(90): Height = 3: 11 28 29 36 47 53 70 75 81 98

+++ delete(75): Height = 3: 11 28 29 36 47 53 70 81 98

+++ delete(47): Height = 3: 11 28 29 36 53 70 81 98

+++ delete(53): [R 7] Height = 2: 11 28 29 36 70 81 98

+++ delete(36): Height = 2: 11 28 29 70 81 98

+++ delete(98): Height = 2: 11 28 29 70 81

+++ delete(11): [R 4] Height = 2: 28 29 70 81

+++ delete(29): Height = 1: 28 70 81

+++ delete(70): [R 2] Height = 1: 28 81

+++ delete(81): [R 1] Height = 0: 28

+++ delete(28): Height = -1:

nins = 600

+++ Inserting increasing sequence of 600 keys

Height after 100 iterations: 12

Height after 200 iterations: 13

Height after 300 iterations: 14

Height after 400 iterations: 15

Height after 500 iterations: 16

Height after 600 iterations: 16

ndel = 500

+++ Deleting increasing sequence of 500 keys

Height after 100 deletions: 12

Height after 200 deletions: 11

Height after 300 deletions: 8

Height after 400 deletions: 8

Height after 500 deletions: 6

Submit a single C/C++ source file. Do not use global/static variables.

— Page 3 of 3 —

