
CS29002 Algorithms Laboratory

Assignment No: 2

Last date of submission: 03–August–2016

Let T be a binary tree with each node storing a flag called EOS (see below why) and two child pointers L

and R. Some nodes in T , including all the leaves, have the EOS flag set. Imagine that every left-child link

is labeled by 0, and every right-child link by 1. We say that T stores a binary string α ∈ {0,1}∗ if there is

a node v with the EOS flag set such that the unique path from the root to v is labeled by the symbols of α .

Here, EOS stands for the end of a string stored in T .

As an example, consider the binary tree in Part (a) of the following figure. Nodes for which the EOS flag is

set are shown as solid black circles. All the binary strings stored in this tree are 0, 000, 0010, 10, 11, 110,

and 1111. The tree does not store 001 (the path from the root labeled by this string ends at a node in which

the EOS flag is not set), and 010 (there is no path from the root that is labeled by this string).

(a) (b) (c)

0

0

0 1

0

0

0

1

1

1

1

0

0

0 1

01

1

0

1 0

1

1

1

0

0

0 1

101

1 1 0

0

The binary strings stored in T can be identified with positive integers in the following way. Let a > 0 be a

positive integer having the l-bit binary representation a = (1al−2al−3 . . .a1a0)2. We call l the length of a,

and denote this as |a|= l. If T stores the (l −1)-bit string al−2al−3 . . .a1a0, we say that T stores the integer

a. For all positive integers, the most significant bit (msb) is 1, so we discard the msb for the purpose of

storage. Part (a) of the above figure stores the integers (10)2 = 2, (1000)2 = 8, (10010)2 = 18, (110)2 = 6,

(111)2 = 7, (1110)2 = 14, and (11111)2 = 31.

Define a data type to store a node in T . Each node should contain only the EOS flag, and two child links.

The integer value corresponding to a node is not explicitly stored in the node. Moreover, there must not be

any parent pointer in a node. By “passing T to a function,” we imply passing a pointer to the root node of T .

Part 1: Write a function printTree(T) to print all the binary strings stored in T . The printing must be in the

lexicographic order of the stored strings. For the tree of Part (c), the output should be ε (the empty string),

000, 0010, 011, 10, 11, 110. Your function should run in O(n) time, where n is the number of nodes in T .

Part 2: Write a function insert(T, a) to insert an integer a (or equivalently the binary representation of a

without the msb) to a binary tree T . The function should return a pointer to the root of the tree after the

insertion. The tree in Part (b) of the figure is obtained from the tree of Part (a) after inserting the integers

1 = (1)2 and 11 = (1011)2 (equivalently, the empty string and the string 011). Your function should run in

O(|a|) time for inserting a to any binary tree T (irrespective of the number of nodes already present in T).

Part 3: Write a function delete(T, a) to delete an integer a (or equivalently the binary representation of a

without the msb) from a binary tree T . The function should return a pointer to the root of the tree after the

deletion. If a is not stored in T , this deletion does not change T . Otherwise, the EOS flag of the node where

the binary representation of a ends should be reset to 0. If this happens at a leaf node, the node must be

deleted. This deletion may create a leaf node with the EOS flag not set. As long as this happens, the exposed

leaf nodes must be deleted. Part (c) of the above figure is obtained from Part (b) after deleting the integers

5 = (101)2, 10 = (1010)2, 2 = (10)2, and 31 = (11111)2. This is equivalent to deleting the strings 01,010

(the tree did not store these strings), 0 (only the EOS flag is reset), and 1111 (two nodes 1111 and 111 are

deleted). Your function should run in O(|a|) time for deleting a from any binary tree T .

— Page 1 of 2 —

Part 4: Write a function printInts(T) to print all the integers stored in T . The printing must be in the

ascending order of the stored integers. For the tree of Part (c), the output should be 1, 6, 7, 8, 11, 14, 18.

Your function should run in O(n) time, where n is the number of nodes in T .

The main() function: Do the following.

• Create an initially empty binary tree T .

• Read nins from the user. The user then enter nins positive integers. Insert these integers one by one to

T by calling the function of Part 2. After all the nins insertions, print the strings stored in T by calling

the function printTree(T) of Part 1.

• Read ndel from the user. The user then enter ndel positive integers. Delete these integers one by one

from T by calling the function of Part 3. After all the ndel deletions, print the strings stored in T by

calling printTree(T).

• Reset T to an empty tree.

• Read nins positive integers from the user, and insert these integers one by one to T by calling

the function of Part 2. After each insertion, print the integers stored in T by calling the function

printInts(T) of Part 4.

• Read ndel positive integers from the user, and delete these integers one by one from T by calling the

function of Part 3. After each deletion, print the integers stored in T by calling printInts(T).

Sample output

nins = 10

+++ Insert: 21 98 30 58 36 75 30 7 74 37

+++ After insertion:

00100 00101 001010 001011 0101 100010 11 11010

1110

ndel = 10

+++ Delete: 37 58 74 21 75 21 7 7 36 30

+++ After deletion:

100010

+++ Old tree destroyed

+++ Insert(2): 2

+++ Insert(92): 2 92

+++ Insert(66): 2 66 92

+++ Insert(21): 2 21 66 92

+++ Insert(92): 2 21 66 92

+++ Insert(92): 2 21 66 92

+++ Insert(86): 2 21 66 86 92

+++ Insert(93): 2 21 66 86 92 93

+++ Insert(27): 2 21 27 66 86 92 93

+++ Insert(18): 2 18 21 27 66 86 92 93

+++ Delete(21): 2 18 27 66 86 92 93

+++ Delete(93): 2 18 27 66 86 92

+++ Delete(86): 2 18 27 66 92

+++ Delete(92): 2 18 27 66

+++ Delete(2): 18 27 66

+++ Delete(92): 18 27 66

+++ Delete(18): 27 66

+++ Delete(27): 66

+++ Delete(66):

+++ Delete(92):

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 2 —

Root

TimOlivia

TobySarah

Sophie

Taniya

PaxtonDan

George

Alex Jessica

Message from Binary Search Tree

Dear Computer Scientists!

Best regards,
Root

Reply of Computer Scientists

I am standing, facing you. So Olivia is my right child,
and Tim is my left child. Your sense of direction seems
confused. Sorry for any inconvenience.

Dear BST, we appreciate your concern, but you are

standing upside down!

