
CS29002 Algorithms Laboratory

Warm-Up Assignment (Not for Evaluation)

Last date of submission: 20–July-2016

This programming exercise demonstrates the philosophy: Think of the algorithm before writing the code. A

PDS-style program may run for hours (or even for your entire lifetime). Only if you carefully look into the

problem, understand its inner details, devise a suitable algorithm, and carefully structure your data, you can

come up with a program which finishes in a decent time. So here you go.

Part 1

Let N = n0n1n2 . . .n9 be a ten-digit decimal number with each digit ni ∈ {0,1,2, . . . ,9}. The number N has

the property that n0 is equal to the number of zero digits in N, n1 is equal to the number of one’s in N, n2 is

equal to the number of two’s in N, . . . , and n9 is equal to the number of nine’s in N. Let us call such an N a

digit-counting number. Your task is to find all digit-counting numbers.

A PDS-style code would make an exhaustive search over all ten-digit numbers (0,000,000,000 through

9,999,999,999). There are 1010 of them, and many of them do not fit in a 32-bit integer even if unsigned

(232 is slightly larger than four billion), so you need to use 64-bit integer arithmetic. The resulting program

would take several hours to several days depending on how efficiently you can code this naı̈ve algorithm.

You need to think about the problem to see how the search space can be reduced. First, notice that n0 cannot

be zero, because n0 = 0 implies that there is no zero in N, whereas you have already put a 0 as n0. So you

may search among the numbers 1,000,000,000 through 9,999,999,999, leading to a reduction of the search

space by 10%. But that gain is marginal. You need to do more.

Since the total number of digits in N is ten, you must have n0 + n1 + n2 + · · ·+ n9 = 10. Numbers

not satisfying this property are not eligible to be digit-counting. For example, once you are done with

1,234,000,000, the next numbers you should try are 1,240,000,003, 1,240,000,012, 1,240,000,021,

1,240,000,030, and so on. This is a significant saving of time.

But then, how do you code this? This calls for a careful structuring of the data. You actually do not need

N. You need its digits only. So maintain an array of ten digits. Finally, how do you step through the eligible

numbers? A good solution is to use backtracking that can be implemented recursively. It is not mandatory

to generate the eligible numbers in the increasing order of values. It only suffices that no eligible number is

missed out.

Now, you go ahead, and write your code. A good program using these observations is expected to solve

your problem in a few seconds.

Part 2

Generalize Part 1 to an arbitrary base. That is, take a base b, and express N as a b-digit number in base b:

N = (n0n1n2 . . .nb−1)b,

where each ni is in {0,1,2, . . . ,b − 1} and counts the number of times the digit i occurs in the base-b

representation of N. Your program should be able to handle bases as large as b = 16.

Spoiler: Digit-counting numbers have additional properties. If you dig those up, you do not need a computer

to solve this problem.

— Page 1 of 1 —


