
CS29003 ALGORITHMS LABORATORY
Re-warming Assignment (Not for Submission)

Date: 23–September–2015

The Traveling Salesperson Problem (TSP) is theoretically, practically, historically, and emotionally a very important
problem in Computer Science. We have n cities numbered 0, 1, 2, …, n – 1. The distance between City i and City j is
denoted by c(i, j). It can be taken as the cost of traveling between City i and City j. Assume that c(i, j) = c(j, i) for all i, j
with i ≠ j. Also take c(i, i) = 0 for all i. A salesperson starts from City 0, visits all the cities once and only once, and
finally comes back to City 0. A tour of the salesperson is defined by a cyclic permutation of 0, 1, 2, …, n – 1. The total
cost of such a cycle is the sum of distances of all edges on the cycle. The salesperson wants to minimize the total cost
over all possible cycles. There are (n – 1)! cycles for n cities (the count may be divided by two to account for a cycle
being traversed in one of the two directions). This quantity grows very rapidly with n.

Part 1 [Exhaustive Search]

Write a recursive function mincostexh() to generate all (cyclic) permutations of 0, 1, 2, …, n – 1. For each such
permutation, compute the cost, and take the minimum over all these costs.

In order to reduce the prohibitive running time of exhaustive search, we devise clever strategies so that some recursive
calls can be eliminated. Suppose that a partial tour of the salesperson is generated. This tour is based on a choice of the
first k cities, call them C0, C1, …, Ck – 1 (we always take C0 = 0). This means that n – k cities remain to be added to the
tour. Exhaustive search places all of the remaining cities as Ck, and makes a recursive call for each of these choices.

Let w be the best (minimum) cost of a tour found so far. The cost incurred by the partially generated tour C0, C1, …, Ck
is u = c(C0, C1) + c(C1, C2) + … + c(Ck – 1, Ck). We compute a lower bound v on the cost incurred by adding the
remaining n – k edges. If u + v ≥ w, there is no point making the recursive call on C0, C1, …, Ck, whereas if u + v < w,
there remains a possibility that exploration with the initial part C0, C1, …, Ck may lead to a better (cheaper) solution, so
the recursive call is made. This strategy is called pruning. The larger the estimate v is, the more effective pruning is to
curtail the cost of exhaustive search.

Part 2 [Global Pruning Strategy]

Let m be the minimum of all the costs c(i, j) with i ≠ j. We can definitely take v = (n – k)m. Write a function
mincostgp() to implement this pruning strategy.

Part 3 [Local Pruning Strategy I]

Consider the partial tour C0, C1, …, Ck. Name the remaining cities to be visited as Dk + 1, Dk + 2, …, Dn – 1.
Also, assume that 1 ≤ k ≤ n – 2 (C0 is always 0, and for k = n – 1, we terminate recursion). From Ck, the
salesperson visits some city Di for i = k + 1, k + 2, …, n – 1 (but not C0). Let vk be the minimum of the
distances c(Ck, Di). Since the salesperson has to get out of City Ck, (s)he has to encounter at least this much
cost on an outgoing edge from Ck. For i = k + 1, k + 2, …, n – 1, the salesperson leaves Di and either reaches
an unvisited Dj or completes the tour by returning to C0 ((s)he does not go back to Ck), so let vi denote the
distance from Di to the closest city in {Dk + 1, Dk + 2, …, Dn – 1, C0} – {Di}. Leaving Di uses an edge at least as
costly as vi. Write a function mincostlp1() that takes v = vk + vk+1 + … + vn – 1. These minimum costs vk, vk+1,

…, vn – 1 are not necessarily compatible with one another, but this v is definitely a lower bound on the
remaining cost (and is usually much better than (n – k)m of Part 2).

Part 4 [Local Pruning Strategy II]

An even better local pruning strategy is based upon looking at two minimum-cost edges associated with an
unvisited city. The reason is that if you enter a city using an edge, you must use a separate edge for leaving the
city. For any i = 0, 1, …, n – 1, let Vi denote the sum of the costs of the incoming and the outgoing edges at the
i-th city. But then, V0 + V1 + … + Vn – 1 is twice the cost of the entire tour. Improve the estimate v of the
remaining cost based upon this observation, and write a function mincostlp2() that uses this pruning strategy.

Write a main() function that first populates the symmetric distance array c[][] by user inputs/random numbers. For
simplicity, assume that each distance is a positive integer. Call the four functions of Parts 1 – 4 to print the optimal cost.
Do not call the exhaustive-search function of Part 1 if n is large (like > 10). For each function, you should also compute
the total number of calls made and the total number of permutations generated (leaves in the computation tree).

Do not use any global/static variable/array.

Sample Output

We supply two sample runs. The first one is verbose. It prints a path as soon as its cost is smaller than the current
minimum-cost path. The second output omits these details.

n = 6

+++ The cost matrix:
 0 43 14 46 99 28
 43 0 51 42 59 15
 14 51 0 74 7 51
 46 42 74 0 1 31
 99 59 7 1 0 96
 28 15 51 31 96 0

+++ Exhaustive search:
 New tour found: 0 1 2 3 4 5 Cost: 293
 New tour found: 0 1 2 4 3 5 Cost: 161
 New tour found: 0 1 5 3 4 2 Cost: 111
 New tour found: 0 2 4 3 1 5 Cost: 107
 Minimum cost computed = 107
 Number of leaves explored = 60
 Number of calls made = 120

+++ Search with global pruning strategy:
 New tour found: 0 1 2 3 4 5 Cost: 293
 New tour found: 0 1 2 4 3 5 Cost: 161
 New tour found: 0 1 5 3 4 2 Cost: 111
 New tour found: 0 2 4 3 1 5 Cost: 107
 Minimum cost computed = 107
 Number of leaves explored = 9
 Number of calls made = 44

+++ Search with local pruning strategy 1:
 New tour found: 0 1 2 3 4 5 Cost: 293
 New tour found: 0 1 2 4 3 5 Cost: 161
 New tour found: 0 1 5 3 4 2 Cost: 111
 New tour found: 0 2 4 3 1 5 Cost: 107
 Minimum cost computed = 107
 Number of leaves explored = 4
 Number of calls made = 19

+++ Search with local pruning strategy 2:
 New tour found: 0 1 2 3 4 5 Cost: 293
 New tour found: 0 1 2 4 3 5 Cost: 161
 New tour found: 0 1 5 3 4 2 Cost: 111
 New tour found: 0 2 4 3 1 5 Cost: 107
 Minimum cost computed = 107
 Number of leaves explored = 4
 Number of calls made = 16

n = 20

+++ The cost matrix:
 0 83 53 77 17 69 82 64 6 62 31 91 46 81 92 56 47 42 96 92
 83 0 49 70 62 56 90 57 87 89 31 42 35 8 25 87 82 41 54 65
 53 49 0 5 59 27 34 48 72 13 41 27 57 80 21 50 30 88 10 85
 77 70 5 0 79 65 70 66 93 12 1 98 34 86 81 72 40 44 75 99
 17 62 59 79 0 70 7 47 40 19 85 64 74 66 83 22 95 71 31 78
 69 56 27 65 70 0 48 93 49 15 87 58 15 83 92 1 62 64 41 6
 82 90 34 70 7 48 0 37 38 73 43 84 12 62 70 75 36 36 56 57
 64 57 48 66 47 93 37 0 29 28 85 7 75 79 55 87 64 14 3 47
 6 87 72 93 40 49 38 29 0 4 1 10 65 39 13 3 76 86 45 59
 62 89 13 12 19 15 73 28 4 0 95 7 29 70 40 62 27 94 90 52
 31 31 41 1 85 87 43 85 1 95 0 78 96 25 55 50 13 17 61 13
 91 42 27 98 64 58 84 7 10 7 78 0 63 64 11 70 29 50 81 31
 46 35 57 34 74 15 12 75 65 29 96 63 0 24 67 76 80 62 80 9
 81 8 80 86 66 83 62 79 39 70 25 64 24 0 30 19 70 54 11 60
 92 25 21 81 83 92 70 55 13 40 55 11 67 30 0 4 86 55 29 41
 56 87 50 72 22 1 75 87 3 62 50 70 76 19 4 0 5 39 57 65
 47 82 30 40 95 62 36 64 76 27 13 29 80 70 86 5 0 51 19 29
 42 41 88 44 71 64 36 14 86 94 17 50 62 54 55 39 51 0 61 86
 96 54 10 75 31 41 56 3 45 90 61 81 80 11 29 57 19 61 0 55
 92 65 85 99 78 6 57 47 59 52 13 31 9 60 41 65 29 86 55 0

+++ Exhaustive search: Not done

+++ Search with global pruning strategy:
 Minimum cost computed = 198
 Number of leaves explored = 214519
 Number of calls made = 244971134

+++ Search with local pruning strategy 1:
 Minimum cost computed = 198
 Number of leaves explored = 111
 Number of calls made = 1176192

+++ Search with local pruning strategy 2:
 Minimum cost computed = 198
 Number of leaves explored = 111
 Number of calls made = 38226

