
CS29003 ALGORITHMS LABORATORY
Cooling-Down Assignment (Not for submission)

Date: 04–November–2015

Let T be a tree (an undirected acyclic graph) with vertex set V = {0, 1, 2, … , n – 1} and edge set E with |E| = n – 1. This
tree is uniquely identified by an array A of size n – 2 with elements from V. In this assignment, you implement
algorithms for converting T to A and for constructing T from A. Store T is the adjacency-list representation of undirected
graphs, and A as an array of integers.

Part 1

Write a function treetoseq() that, upon the input of T, computes and returns the sequence A. The algorithm works as
follows. It runs a loop with n – 2 iterations. Let vi denote the smallest leaf in the tree T at the beginning of the i-th
iteration, and let ui be the (only) neighbor of vi. Delete from T the edge (ui, vi) and the vertex vi. After the loop
terminates, there are only two vertices and one edge remaining in the tree. The sequence A to return is u1, u2, … , un – 2.

Consider the tree shown in the adjacent figure. Initially, the leaves are 1, 3, 4, 6, 7. The
smallest of these is v1 = 1, and its neighbor is u1 = 0. So we send 0 to the output
sequence A, and delete the leaf 1 along with the edge (0, 1). Now the leaves are 3, 4, 6, 7,
so v2 = 3 and u2 = 5. The second element in A is therefore 5, and the vertex 3 and the
edge (3, 5) are deleted. In the remaining four iterations, we have (u3, v3) = (2, 4), (u4, v4)
= (2, 5), (u5, v5) = (0, 2), and (u6, v6) = (0, 6). In the end, only the edge (0, 7) remains, and
the sequence generated is A = (0, 5, 2, 2, 0, 0).

0
/ / \ \

1 2 6 7
/ \
4 5

|
3

Part 2

Write a function seqtotree() that, upon the input of a sequence A of size n – 2, creates and returns the corresponding tree
T. Start with n isolated vertices numbered 0, 1, 2, … , n – 1. Now, run a loop with n – 2 iterations. Let ui be the first
element in A, and vi the smallest vertex not in A. Add the edge (ui, vi). Delete the first element (ui) from A, and append
vi at the end of A. After n – 2 iterations, exactly n – 2 edges are added, and A contains n – 2 distinct vertex numbers. Let
u and v be the two vertices absent from A. Add the edge (u, v) to complete the construction of the tree T.

Let us illustrate this construction for the sequence A = (0, 5, 2, 2, 0, 0). In the first iteration, the smallest vertex number
not in A is 1. So we add the edge (0, 1), and change the sequence to (5, 2, 2, 0, 0, 1). In the second iteration, the smallest
vertex not in A is 3, so the edge (5, 3) is added, and the sequence changes to (2, 2, 0, 0, 1, 3). In the third iteration, the
edge (2, 4) is added, and the sequence changes to (2, 0, 0, 1, 3, 4). The fourth iteration adds the edge (2, 5), and updates A
to (0, 0, 1, 3, 4, 5). In the fifth iteration, the edge (0, 2) is added, and A becomes (0, 1, 3, 4, 5, 2). The last iteration adds the
edge (0, 6) and changes A to (1, 3, 4, 5, 2, 6). As the loop terminates, the two vertices missing from A are 0 and 7. So
finally the edge (0, 7) is added, and we get the same tree as in the example of Part 1.

The main () function

Read n from the user. Create an array A of n – 2 integers in the range 0, 1, 2, … , n – 1. The array A can be read from the
user or populated randomly. Run the function of Part 2 to generate the tree T from A. Print the tree. Then invoke the
function of Part 1 to reconstruct the array A from T. Print the reconstructed A.

Sample Output

n = 10

+++ Sequence to tree construction
 Input sequence:
 8 2 9 8 9 0 7 7
 Output tree:
 0 -> 7 6
 1 -> 8
 2 -> 9 3
 3 -> 2
 4 -> 8
 5 -> 9
 6 -> 0
 7 -> 9 8 0
 8 -> 7 4 1
 9 -> 7 5 2

+++ Tree to sequence construction
 Reconstructed sequence:
 8 2 9 8 9 0 7 7

