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Let G be an undirected graph. The edges in G stand for communication links in a network. Assume that G is connected, 
that is, any node in the network can communicate with any other node in the network. However, it is possible that if a  
link e goes down, the network becomes disconnected, that is, some nodes are separated from some other nodes in the 
network. Links like e are the bottlenecks in the network. When you design a communication network, it is important to 
identify the bottleneck edges. This assignment aims at devising algorithms for this purpose. Let n denote the number of 
vertices in G, and m the number of edges in G. Name the vertices of G as 0, 1, 2, … , n – 1.

Part 1 Write a function getAdjList() that converts a graph in the adjacency-matrix form to the adjacency-list form.  
Use a linked list (not a dynamically allocated array) of neighbors for each vertex.

Part 2 Write  a  function  lcsize()  to  compute  the  size  (that  is,  the  number  of  vertices)  of  the  largest  connected 
component  of  G.  Modify the  DFS  traversal  algorithm to  solve  this  problem.  The  running  time  of  your 
function should be O(n + m).

Part 3 Assume that G is connected. Write a function bnefind() to locate all bottleneck edges in G. Use the following 
strategy. For each edge  e of  G, call the function of Part 2 on the graph  G –  e. If  G –  e contains multiple 
components, then e is a bottleneck edge; print e. Under the assumption that G is connected, the running time 
of this function is O(m2).

Part 4 Assume again that G is connected. Design an O(m)-time function bnefindfast() to identify all bottleneck edges 
in G. This algorithm is based on a modification of a single DFS traversal in the graph. Start the DFS at Vertex 
0. The traversal produces a spanning tree (the DFS tree) T of G. The edges of T are called tree edges. Every 
other edge of  G is a  back edge. The back edges supply alternative connections between vertices and their 
proper ancestors in T. Let (u, v) be a tree edge (where v is a child of u). If the DFS subtree rooted at v contains 
no back edge to any proper ancestor of u, then the removal of (u, v) disconnects v from u, that is, (u, v) is a 
bottleneck edge.

For implementing this idea, number the vertices of G sequentially in the order they are visited during the DFS 
traversal. Moreover, for each node  u, maintain a minimum of the sequential numbers of nodes  v reachable 
from u along the following two types of paths: (1) v is a descendant of u, and the u-v path consists only of tree 
edges. (2) v is a proper ancestor of u such that for some descendant w of u (you may have w = u), the u-v path 
consists of tree edges from u to w, and a back edge from w to v. Update these minimum values at the nodes 
during the DFS traversal. Discover the bottleneck edges based upon these minimum values.

main() – Read the number n of vertices in G from the user. Read and store the adjacency matrix M of G. Since G is 
undirected, read only the entries of M above the main diagonal. Call the function of Part 1 to convert M to 
the adjacency-list representation of G. Print the neighbors of each vertex using the adjacency list.

– Call the function of Part 2 to compute and print the size of the largest connected component of G. If G is 
not connected, exit.

– Call the function of Part 3 to locate and print all the bottleneck edges in G.
– Call the function of Part 4 to locate and print all the bottleneck edges in G.

Submit a single C/C++ source solving all the parts. Do not use any global/static variable/array.



Sample Output

n = 8

+++ Reading adjacency matrix
     0 0 1 0 0 0 0
       1 0 0 0 1 1
         0 0 0 1 1
           0 1 0 0
             0 1 0
               0 1
                 0

+++ Converting adjacency matrix to adjacency list

+++ Printing graph from adjacency list
    Neighbors of   0:  3
    Neighbors of   1:  2  6  7
    Neighbors of   2:  1  6  7
    Neighbors of   3:  0  5
    Neighbors of   4:  6
    Neighbors of   5:  3  7
    Neighbors of   6:  1  2  4
    Neighbors of   7:  1  2  5

+++ Finding the largest component size
    Component   1:   0   3   5   7   1   2   6   4
    The largest component has 8 nodes

+++ Finding bottleneck edges (Inefficient)
    (  0 , 3  ) is a bottleneck edge
    (  3 , 5  ) is a bottleneck edge
    (  4 , 6  ) is a bottleneck edge
    (  5 , 7  ) is a bottleneck edge

+++ Finding bottleneck edges (Efficient)
    (  6 , 4  ) is a bottleneck edge
    (  5 , 7  ) is a bottleneck edge
    (  3 , 5  ) is a bottleneck edge
    (  0 , 3  ) is a bottleneck edge


