
CS29003 ALGORITHMS LABORATORY
Assignment No: 9

Last Date of Submission: 07–October–2015

Ms. Zyzzyva receives m items in her office at Fast Courier Transform Private Limited. Each item has a cost (or weight).
She needs to put the items in cartons for shipping to a foreign country. She must put the items in the same sequence as
she has received them. Moreover, the total cost of the items packed in each carton must not exceed a capacity bound C
(this may be the weight limit of a carton or a restriction on total cost imposed by the customs department of the
destination country). In order to reduce packing and shipping costs, Ms. Zyzzyva needs to minimize the number of
cartons to pack all the m items without violating the sequence and capacity constraints. Let the item costs and C be
integers. Treat C as a constant. For this assignment, take C = 100. Finally, assume that each item cost is ≤ C (otherwise,
the problem has no solution).

We can restate Ms. Zyzzyva's problem as follows. Let A = [a0, a1, … , am – 1] be an array of m integers. Decompose the
array into a concatenation of k subarrays (A = A1A2 … Ak) such that no Ai is empty, and k is as small as possible.

Part 1 In this part, assume that each ai is positive. Write a function packpos() to solve Ms. Zyzzyva's problem in this
case. Your function should implement a greedy algorithm, and run in O(m) time.

Part 2 Now, allow the array elements ai to be negative, that is, A[] is now a mixture of positive and negative integers.
(If you need a physical interpretation, think of a helium-filled balloon having “negative” weight or a discount
coupon having negative cost.) Write a function packposneg() to solve the packing problem. Your function
should run in O(m2) time. Use dynamic programming. Write a comment before the function, clearly stating
what recurrence relation you are using in your dynamic-programming algorithm.

Part 3 Finally, suppose that there are two arrays A = [a0, a1, … , am – 1] and B = [b0, b1, … , bn – 1]. For simplicity,
assume again that all ai and bj are positive integers. These two arrays stand for two different types of items
(one from multi-national companies, the other from ulti-national companies). Ms. Zyzzyva may mix items of
two types in a carton. But the total cost of the items in each carton must be ≤ C, and the items of both types
must be packed in the sequence they appear in the respective arrays. In other words, she needs a simultaneous
decomposition of the two arrays as A = A1A2 … Ak and B = B1B2 … Bk (k is the same for both the arrays) such
that for each i, either Ai or Bi (or both) is/are non-empty, and the sum of the elements of Ai and Bi is ≤ C. The
goal is to make k as small as possible. Write an O(mn)-time function packtwo() to solve the packing problem
for two arrays. This function too should take a dynamic-programming approach. Write a comment before the
function, clearly stating what recurrence relation you are using in your dynamic-programming algorithm.

Write a main() function to do the following:

• Read m and an array A of m positive integers. Call the function of Part 1 to optimally pack the items in A. Print
which items are packed in each carton. Do not rewrite A. We need it again at the end.

• Read a second array A' of a mixture of m positive and negative integers. Call the function of Part 2 to optimally
pack the items in A'. Print which items are packed in each carton.

• Read n and an array B of n positive integers. Call the function of Part 3 to optimally pack the items in A and B.
Print which items are packed in each carton.

Submit a single C/C++ file solving all the parts. Do not use global/static variables.

Sample Output

m = 40

+++ Input array with positive entries
 14 15 6 5 5 15 12 13 13 12 6 18 8 19 7 14
 20 19 13 14 1 18 15 13 9 19 17 5 1 6 3 15
 20 20 11 5 6 2 17 18

+++ Packing items of positive costs

 ...

 Carton 3: Packing A[16 ... 22]: Total cost = 100

 ...

*** Total number of cartons needed = 5

+++ Input array with positive and negative entries
 -4 -2 -6 11 -9 16 11 7 17 1 5 13 17 1 5 -2
 9 13 18 1 12 16 16 14 16 -7 1 19 10 -7 2 16
 13 -8 -5 -3 16 19 -2 -6

+++ Packing items of both positive and negative costs

 ...

 Carton 3: Packing A[27 ... 39]: Total cost = 64
*** Total number of cartons needed = 3

n = 30

+++ Input array with positive entries
 9 18 2 1 10 2 19 18 3 10 16 9 3 16 4 5
 20 3 4 2 18 11 14 15 18 14 14 20 7 17

+++ Packing two types of items with positive costs
 Carton 1: Packing A[0 ... 8] : Total cost = 98
 Carton 2: Packing A[9 ... 14] B[0 ... 3] : Total cost = 100
 Carton 3: Packing A[15 ... 21] : Total cost = 99
 Carton 4: Packing A[22 ... 24] B[4 ... 9] : Total cost = 99
 Carton 5: Packing A[25 ... 25] B[10 ... 18] : Total cost = 99
 Carton 6: Packing A[26 ... 27] B[19 ... 24] : Total cost = 100
 Carton 7: Packing A[28 ... 32] B[25 ... 28] : Total cost = 100
 Carton 8: Packing A[33 ... 39] B[29 ... 29] : Total cost = 96
*** Total number of cartons needed = 8

A zyzzyva (Source: Youtube images)

