CS29003 ALGORITHMS LABORATORY
Assignment No: 3
Last Date of Submission: 12—August-2015

Imagine a priority queue storing jobs/processes, each possessing a priority value. The heap ordering is with respect to
these priority values. The queue is assumed to be dynamic, that is, jobs may join the queue at any time. A job with the
highest priority is dequeued, and scheduled for execution. If the system is overloaded, there is a necessity to get rid of
some job(s) without scheduling them at all. Quite naturally, we throw out those jobs which have the lowest priority. In a
max-heap, it is as such difficult (linear-time) to locate a minimum (or run a general search). The basic max-heap data
structure can be modified in many ways so that the minimum can be located and deleted efficiently (logarithmic-time).
This assignment deals with one such idea.

Part 1: Each node in the heap now consists of two values: the priority of the node (job), and a min value which stores
the minimum of all priority values stored in the subtree rooted at that node (including the priority of that node itself).
Define a contiguous representation of a heap of this type. Use a static array with a maximum supported size.

Part 2: Write a function initHeap(Q, n) that converts an array Q of n elements to a max-heap with respect to the priority
values. This function does nothing with the min values stored in the nodes. The running time should be O(#n).

Part 3: Write a function initMin(Q, n) that, given a heap initialized by the function of Part 2, correctly populates the min
values at all the nodes. The running time of this function should be O(#).

Part 4: In Parts 57, you write the functions for insertion and deletion in Q. After each of these operations, Q must
retain its heap structure and heap ordering with respect to priority values. Moreover, the min values must be correctly
restored at all the nodes. We finally demand these operations to finish in O(log #) time. If you call the naive initMin()
function of Part 3, you end up with O(n)-time algorithms. Fortunately, each of the insert and delete functions can be so
designed that the min values at only O(log 7n) number of nodes are (potentially) affected. It suffices to recalculate the
min values only at these nodes. To that effect, write a function adjustMin(Q, n, i) that takes a queue Q of size n along
with an index 7 as input. The function recalculates the min values at all the nodes lying on the (simple) path connecting
the node at index i with the root. Since any (simple) path between the root and a node is of length O(log »), this function
would run in O(log n) time only. You need to figure out in the following three parts the calls of adjustMin() (the indices
i to be precise) that you should make in order to restore the min values at (only) the affected nodes.

Part S: Write a function insert(Q, n, p) that inserts a priority value p to a queue Q of (pre-insertion) size n. The function
should also recalculate the min values at the nodes that are potentially affected by the insertion. The running time of this
function should be O(log n).

Part 6: Write a function deleteMax(Q, n) that deletes the maximum from the queue Q of (pre-deletion) size n, and
recalculates the min values at the affected nodes. This function should run in O(log 7) time.

Part 7: Write a function deleteMin(Q, n) that deletes a node storing the minimum value from the queue Q of (pre-
deletion) size n, and recalculates the min values at the affected nodes. This function should run in O(log n) time.

Part 8: Write a main() function to do the following:
* Read ninit from the user. Store ninit priority values supplied by the user in your queue Q. Call the function of
Part 2 to convert this array to a max-heap with respect to the priority values. Then, call the function of Part 3 to

initialize the min values at all the nodes. Print Q.

* Read nins from the user. The user then supplies nins priority values to be inserted in Q. Call the function of
Part 5 for each priority value supplied by the user. Print Q after all of the nins insertions are made.

e Read ndelmax from the user. Invoke the function of Part 6 in order to make ndelmax maximum deletions from
Q. Print Q after all these deletions are made.

¢ Read ndelmin from the user. Invoke the function of Part 7 in order to make ndelmin minimum deletions from
Q. Print Q after all these deletions are made.

Submit a single C/C++ file solving all the parts.

Sample Output

In the sample run below, the user supplies ninit, nins, ndelmax, ndelmin, ninit initializing values, and nins priority
values for insertion. The maximum and minimum values to be deleted are not supplied by the user. They are only
printed in order to show which values are deleted. Each line prints the priority and min values stored in a node along
with these values (inside parentheses) in its two child nodes. Underscore stands for the non-existence of the child node.
Of course, making suitable jumps in the listing will allow you to retrieve the child information (Line 7 has its children in
Lines 2i and 2i+1 under one-based array indexing). But having the child information adjacent to a node's information is
helpful for visualizing and debugging.

ninit = 10
+++ Initializing queue: 40 69 50 85 84 26 74 8 3 4
+++ Queue initialized
85,3 (84,3 : 74,26)
84,3 (69,3 : 40,4)
74,26 (26,26 : 50,50)
69,3 (88 : 3,3)
40,4 (4,4
26,26
50,50
8,8
3,3
4,4

~~~ e~~~
11
11
)

nins = 5
+++ Inserting elements: 18 2 47 79 26
+++ Insertions done
85,2 (84,3 : 79,2)
84,3 (69,3 : 40,4)
79,2 (47,2 : 74,26)
69,3 (8,8 : 3,3)
40,4 (4,4 : 18,18)
47,2 (2,2 : 26,26)
74,26 (50,50 : 26,26)
8,8 )
3,3
4,4
18,18
2,2
26,26
50,50

P P
|
|
e~~~

ndelmax = 5
+++ Deleting maximum: 85 84 79 74 69
+++ Deletions done
50,2 (40,3 : 47,2)
40,3 (26,3 : 18,4 )
47,2 (2,2 : 26,26)
,8 : 3,3)
’ 4 :

|
|
e~~~

ndelmin = 5
+++ Deleting minimum: 2 3 4 8 18
+++ Deletions done
50,26 (40,26 : 47,47)
40,26 (26,26 : 26,26)
47,47 ( _ _ )
26,26 ( _ : _ )
26,26 ( _ : _ )



