
CS29003 ALGORITHMS LABORATORY
Assignment No: 1

Last Date of Submission: 29–July–2015

Let T be a binary search tree (BST) with integer key values, and let x and y be two integers with x ≤ y. The goal of this
assignment is to design an algorithm to print all the key values v stored in T, that satisfy x ≤ v ≤ y. Let h be the height of
T, and k the number of values printed. Your printing algorithm should run in O(h + k) time, and use only O(1) additional
variables (if you count the recursion stack, the space requirement would be O(h)).

First, define a data type to store a node in the BST. Each node should consist of an integer key value and two child
pointers (left and right). A node in the tree must not store any additional element (like the parent pointer).

Now, solve the following parts in order to arrive at the desired printing algorithm.

Part 1: Write an insert() function for inserting a value x in a BST T. The function should return the modified tree after
the insertion (or the original tree if x is already stored in T). Use the standard BST-insertion procedure.

Part 2: Write a function printBST() to print a binary search tree T. A BST is uniquely identified by its pre-order and in-
order listings. So it suffices to print these two listings. You need to write two other functions preorder() and inorder()
for this. A fancy printing is shown in the sample output. Do not waste time on implementing it. If you like this printing,
try it offline as a take-home programming challenge.

Part 3: Write a function search1() that, given a BST T and an integer x as input, returns a pointer to the tree node
storing the smallest value ≥ x. Notice that x itself need not be present in T. In that case, a pointer to the tree node storing
the closest value larger than x should be returned. If all the values stored in T are smaller than x, then the NULL pointer
should be returned. The running time of this function should be O(h).

Part 4: Write a function search2() that, given a BST T and an integer y as input, returns a pointer to the tree node
storing the largest value ≤ y. Notice that y itself need not be present in T. In that case, a pointer to the tree node storing
the closest value smaller than y should be returned. If all the values stored in T are larger than y, then the NULL pointer
should be returned. The running time of this function should be O(h).

Part 5: Let p be a node in a BST T. There exists a unique path from the root of T to p. By an ancestor of p, we define
any node on this path. That is, the ancestors of p are p itself, the parent of p, the grandparent of p, the grandgrandparent
of p, and so on. Given two nodes p and q in T, the lowest common ancestor of p and q is a node r in T such that r is an
ancestor of both p and q, and is farthest from the root among all the common ancestors of p and q. Since the root is a
common ancestor of every node in T, the lowest common ancestor of any nodes p and q exists and is uniquely defined.
Write a function lca() that, upon the input of a BST T and two pointers p, q to nodes in T, returns a pointer to the lowest
common ancestor of p and q. The case p = q should be allowed. The running time of this function should be O(h).

Part 6: Write a function printrange(), that upon the input of a BST T and two integers x and y satisfying x ≤ y, prints all
the values v stored in T such that x ≤ v ≤ y. The values should be printed in sorted order (increasing). The running time
and space requirement of this function should be as mentioned above, that is, O(h + k) and O(h), respectively.

Part 7: Write a main() function to do the following:

• Initialize T as an empty BST.

• Read n (the number of insertions) and integers a1, a2, …, an from the user. The integers a1 through an are
inserted one by one in T using the insert() function of Part 1. After all insertions are made, you print T using
the function printBST() of Part 2.

• Read two integers x and y from the user. Run the two functions search1(x) and search2(y). Let the two pointers
returned by these calls be p and q. Print the key values pointed to by p and q (see Parts 3 and 4).

• Run lca(p,q), and print the key value pointed to by the pointer returned by the call (see Part 5).

• Invoke the function printrange(T, x, y) of Part 6 in order to print the values in T in the range [x, y].

Submit a single C/C++ file solving all the parts. Do not use global or static variables. Do not use the C++ STL.

Sample Output

n = 20
+++ Insert : 86 58 82 78 48 85 28 18 14 69 11 3 37 50 17 96 77 11 43 56

+++ The BST created has the following listings
 Preorder : 86 58 48 28 18 14 11 3 17 37 43 50 56 82 78 69 77 85 96
 Inorder : 3 11 14 17 18 28 37 43 48 50 56 58 69 77 78 82 85 86 96

+++ The following fancy printing of the BST is not for submission.
+++ You may implement it as a take-home programming exercise.
 86
 L-->58
 | L-->48
 | | L-->28
 | | | L-->18
 | | | | L-->14
 | | | | | L-->11
 | | | | | | L-->3
 | | | | | | | L-->NULL
 | | | | | | | R-->NULL
 | | | | | | R-->NULL
 | | | | | R-->17
 | | | | | L-->NULL
 | | | | | R-->NULL
 | | | | R-->NULL
 | | | R-->37
 | | | L-->NULL
 | | | R-->43
 | | | L-->NULL
 | | | R-->NULL
 | | R-->50
 | | L-->NULL
 | | R-->56
 | | L-->NULL
 | | R-->NULL
 | R-->82
 | L-->78
 | | L-->69
 | | | L-->NULL
 | | | R-->77
 | | | L-->NULL
 | | | R-->NULL
 | | R-->NULL
 | R-->85
 | L-->NULL
 | R-->NULL
 R-->96
 L-->NULL
 R-->NULL

x = 30
y = 70

+++ search1(30) : 37
+++ search2(70) : 69

+++ lca(37,69) : 58

+++ Values in T between 30 and 70 are: 37 43 48 50 56 58 69

