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Let G be an undirected graph. We use DFS in G to solve a couple of problems associated with G.

Part I

Read the number n of vertices and the number e of edges in G. The vertices of G will be numbered 0, 1, … , n – 1. The 
e edges (with each edge being specified by two different vertex numbers in the range mentioned above) are then read 
from the user.  Store the graph in the  adjacency-list format. Each adjacency list  should be a linked list storing the 
numbers of the neighboring vertices. For an undirected edge (u, v), store both u in the adjacency list of v, and v in the 
adjacency list of u. Print the adjacency lists for each vertex.

Part II

In this part, you check whether G is bipartite. Recall that G is bipartite if and only if it does not contain any cycle of odd 
length. Modify the DFS function taught in the class to detect if G has any cycle of odd length. Note that the input graph 
G need not be connected.

Part III

Let u,  v,  w be three different vertices in G. By the removal of v from G, we mean a graph H which is the same as G 
except that H does not contain (1) the vertex v, and (2) all the edges in G in which v is an endpoint. Suppose that in G, 
the vertices u and w are connected. That means that there are one or more paths from u to w. If all these paths go via v, 
then the removal of v from G gives a graph H in which u and w are disconnected from one another. We call v a critical  
vertex if its removal disconnects at least one pair of different vertices. In this part, your task is to locate all critical  
vertices in G.

The obvious algorithm is to consider each vertex  v,  delete it  from  G,  and check whether the new graph has more 
connected components than G. This takes a total running time of O(n (n + e)).

Design an O(n + e)-time algorithm to locate all critical vertices in G. You need to modify the standard DFS procedure. 
Give serial numbers to the vertices in increasing sequence as they are visited. Also maintain a criticalness value for each 
vertex  v.  This is  initialized to the serial  number of  v,  and is meant to store the minimum of this initial value,  the 
criticalness values of all vertices (excluding v) in the DFS subtree rooted at v, and the serial numbers of all vertices that 
have back edges from v. Handling back edges is necessary, because these edges provide escape routes from a vertex to 
an ancestor without following the tree edges. Update the criticalness values appropriately, and use them to detect critical  
vertices. Also note that the root vertex requires a separate treatment (because it has no proper ancestor to escape to).

Consider  the  graph shown in the adjacent  figure.  This  graph is  not  bipartite,  since it 
contains the 3-cycle (0, 4, 5). The solid edges are DFS tree edges, and the dotted edge is a  
back edge. The serial numbers of the vertices are shown in red, and the criticalness values 
in green. In this graph, Vertices 2 and 4 are critical. The removal of Vertex 4 disconnects 
Vertices 2 and 3 from Vertex 1, for example. The back edge (5, 0) changes the criticalness  
value of Vertex 5 to 0. Because of this, Vertex 4 too receives a criticalness value of 0.

Sample Run

For the graph shown in the adjacent figure, the program runs as follows.

+++ n = 6
+++ Neighbor list:
    0 :  4  5
    1 :  4
    2 :  3  4
    3 :  2
    4 :  0  1  2  5
    5 :  0  4
+++ Running DFS
    0  4  1  2  3  5
The graph is not bipartite
+++ The critical vertices of G are:
    4 is critical for 1
    2 is critical for 3
    4 is critical for 2


