CS29003 ALGORITHMS LABORATORY
Assignment No: 4
Last Date of Submission: 21-August-2014

In this assignment, you implement a data structure called #reap. A treap 7T is a binary tree with each node storing two
values: a key (take it to be a positive integer) and a priority (a floating-point value in the range [0,1)). In addition, there
are three pointers in each node: left, right and parent, with the usual meanings. The tree T is a binary search tree with
respect to the key values. Moreover, the priority values must obey the max-heap ordering property. 7T is not assumed to
be full, that is, the heap structure property is not enforced. We only require each node to store a priority value no less
than the priority values of its two child nodes.

First, implement an insert() function for treaps. Let 7 be a treap, and we want to insert a key x with a priority y in T.
Initially, we follow the standard BST insertion procedure to insert x in 7. If x is already present in 7, no change is made
in T (even when the new priority y of x is different from its old priority). Now, we adjust the priority values along the
unique path from the inserted leaf to the root node. Let p be a node on this path, and ¢ its parent. If ¢ is NULL, or the
priority of ¢ is not less than the priority of p, we are done. Otherwise, if p is the left child of ¢, we make a right rotation
at g. Finally, if p is the right child of ¢, we make a left rotation at ¢. This single rotation restores both BST and heap
orderings at g. However, heap ordering may be violated at the parent of ¢. So we continue our adjustment procedure
further up in the tree.

Then, implement a delete() function for treaps. We start by locating the key x to be deleted. If 7 does not contain x, no
change is made. So assume that x is present at a node p. If at least one child of p is NULL, delete p straightaway. This
deletion does not call for restoration of heap ordering. However, if both the children of p are non-NULL, then we locate
the immediate successor/predecessor 7 of p in 7. We copy the data of 7 to p, and delete ». Now, the new priority at p may
violate heap ordering. Since » was in the subtree rooted at p, the new priority of p cannot be larger than its old priority.
Therefore, there is now a necessity to move the new priority value down the tree until heap ordering is restored (or the
new priority value has reached a leaf node). Follow a procedure similar to heapify, and adjust heap ordering at each
node by a left/right rotation.

Write a main() function that does the following tasks:

Start with an initially empty treap 7.

Read the number 7 of keys to be inserted in 7.

Read n (key, priority) pairs. These are inserted one by one in 7. Print T after each insertion.

Read the number m of deletions.

Read m keys. These key values are deleted one by one from 7, and T is printed after each deletion.

e S

T should be printed as in Assignment 3 (data for a node followed by data for its two children in one line).
Sample Output

The following transcript shows one insertion followed by one deletion. The (key, priority) pairs are printed.

(58,0.935971) -> (38,0.731085), (90,0.651462) +++ delete(63)
(38,0.731085) —> (16,0.435779), (50,0.500000) (58,0.935971) -> (38,0.731085), (90,0.651462)
(16,0.435779) -> (NULL,-), (28,0.138100) (38,0.731085) -> (16,0.435779), (50,0.500000)
(28,0.138100) —-> (NULL,-), (NULL,-) (16,0.435779) -> (NULL,-), (28,0.138100)
(50,0.500000) -> (NULL,-), (53,0.282950) (28,0.138100) -> (NULL,-), (NULL,-)
(53,0.282950) —-> (NULL,-), (NULL,-) (50,0.500000) —-> (NULL,-), (53,0.282950)
(90,0.651462) —> (86,0.287194), (NULL,-) (53,0.282950) -> (NULL,-), (NULL,-)
(86,0.287194) -> (73,0.201614), (NULL,-) (90,0.651462) -> (86,0.287194), (NULL,-)
(73,0.201614) -> (NULL,-), (NULL,-) (86,0.287194) -> (73,0.201614), (NULL,-)
Number of nodes = 9 (73,0.201614) -> (NULL,-), (NULL,-)

Number of nodes = 9
+++ insert (63,0.993582)
(63,0.993582) -> (58,0.935971), (90,0.651462)
(58,0.935971) -> (38,0.731085), (NULL,-)
(38,0.731085) -> (16,0.435779), (50,0.500000)
(16,0.435779) -> (NULL,-), (28,0.138100)

(28,0.138100) -> (NULL,-), (NULL,-)
(50,0.500000) —-> (NULL,-), (53,0.282950)
(53,0.282950) -> (NULL,-), (NULL,-)

(90,0.651462) -> (86,0.287194), (NULL,-)
(86,0.287194) -> (73,0.201614), (NULL,-)
(73,0.201614) -> (NULL,-), (NULL,-)
Number of nodes = 10

Historical Note: Treaps are introduced in 1989 by Aragon and Seidel. They define a treap as a BST with random
priority values. When a new key is inserted, a uniformly random priority in the interval [0,1) is assigned to it. They
show that the rotations caused by these priority values produce a BST which has an expected height of O(log #). Two
treaps with distinct sets of key values can be merged in expected logarithmic time. On the contrary, binary heaps are not
efficiently mergeable.



