
CS29003 ALGORITHMS LABORATORY
Assignment No: 3

Last Date of Submission: 14-Aug-2014

You manage a site www.opionics.com where people post photos and rate the posted photos. You need to maintain a good
data structure for handling the photo ratings. Individual photos are given unique IDs in the sequence 0, 1, 2, … as they
are posted to your site. Users can upvote (like) or downvote (dislike) a photo. The rating of a photo is an integer equal
to the number of upvotes minus the number of downvotes that the photo receives. If the downvotes outnumber the
upvotes for a photo, its rating is treated as zero, that is, the rating is not allowed to be negative. You need to access, alter
the rating of, insert, and delete photos. A service like this is expected to deliver frequent top-photo suggestions (like the
photo of the day).

Since your server is very loaded with billions of requests every second, you prefer to go for a very efficient data
structure, namely, a priority queue (a max-heap) H in which insert, delete, upvoting and downvoting must be done with
reasonable effort. You go for a contiguous (array) representation of H in which every cell stores two items: the ID of a
photo, and its rating. The heap ordering is with respect to the ratings of the photos.

Read an initial size of the heap, say, ninit. Populate the first ninit entries of H with the pairs (i,riniti), where i is the ID of
the ith element and riniti is the initial rating of the ith photo—an integer chosen randomly in the range 0–10. At this
stage, the array is not necessarily a heap. Write a linear-time function makeHeap() to convert this array to a max-heap
with respect to the rating vales.

Next, you enter a loop. In each iteration of the loop, you perform one of the following operations based on user inputs:

1. Insert: Add a new photo to the queue with an initial random rating in the range 0–10.
2. Upvote: Increment the rating (by one) of any randomly posted photo.
3. Downvote: Decrement the rating (by one) of any randomly posted photo (unless its current rating is zero).
4. Delete: Delete any randomly chosen photo.
5. Quit: Break the loop and exit.

Operations 2–4 in the loop call for accessing elements by their IDs, whereas the heap ordering is with respect to the
rating values which have nothing to do with the IDs. In order to relieve your server from the burden of making linear
searches in H for locating an ID, you maintain an index array IDX. The ith entry in IDX stores the index in H where the
record (i,ri) for the ith photo resides. Locating a specific ID i in H is then a constant-time effort. After you initially
convert the ninit entries in H to a max-heap, write a function initIndex() that makes a pass through H and populates the
index array IDX appropriately.

During an up- or down-voting inside the loop, you use IDX to locate a randomly chosen element (i,ri) in H. You
increment/decrement ri as needed (do not make any change during downvoting if ri = 0). A change in ri may violate
heap ordering in H. Handle this appropriately to restore heap ordering. Both up- and down-voting functions should run
in O(log n) time, where n is the current size of the heap.

Efficient insertion and deletion require some care. When you delete the ith photo, set IDX[i] to an invalid index like –1.
Moreover, copy H[n – 1] to H[i], and restore heap ordering. No photo inserted after this deletion will get the ID i. So
you need to maintain two counts: the current size n of H, and the total number N of photos that you ever dealt with. An
insert event assigns the ID N to the new photo (the earlier photos, present or deleted, have IDs 0, 1, 2, …, N – 1), and
adds this ID with an initial rating to H as in a priority queue. Notice that an insert event could reassign a deleted ID to
the new photo, but that adds to the bookkeeping burden of your busy server, which you cannot afford. Moreover, your
service may be thought to support an undelete operation (don't implement this in your program). There is a limit NMAX
on the maximum number of photos your program can handle. An attempt to insert the (NMAX + 1)-st element should
fail even if n < NMAX. Both insert and delete must run in O(log n) time.

Operations 1–4 mentioned above may perform swapping of elements of H. You must also swap the corresponding
elements in IDX to reflect the change of positions in H.

Write a main() function like the following:

Read ninit from the user.
Populate H with ninit random entries (i,riniti). Print H.
Convert H to a max-heap with respect to the rating values. Print H.
Prepare the index array IDX by making a pass through H. Print IDX.
Run the Insert/Upvote/Downvote/Delete loop (until broken). Print H and IDX after every iteration.

Write the functions in the following sequence: makeHeap(), initIndex(), insert(), upVote(), downVote(), delete().

Sample Output

The following run starts with ninit = 10. Initially H is not a heap. After that, H is always printed as a max-heap, and
IDX entries store indices in H. The heap is printed as a sequence of (i,ri) values. The entry i(j) in the printing of IDX
indicates that the photo with ID i can be located at H[j]. If the photo with ID i is deleted, we have IDX[i] = –1. Here,
upvote(2) means upvote the photo with ID 2, downvote(3) means downvote the photo with ID 3, delete(1) means delete
the photo with ID 1, insert(6) means insert a new photo with initial rating 6, and so on. All indexing is zero-based.

Current heap (10 nodes)
 (0,3) (1,9) (2,1) (3,4) (4,6) (5,3) (6,5) (7,6) (8,6) (9,3)
--
Current heap (10 nodes)
 (1,9) (7,6) (6,5) (8,6) (4,6) (5,3) (2,1) (3,4) (0,3) (9,3)
Current index array (10 cells used)
 0(8) 1(0) 2(6) 3(7) 4(4) 5(5) 6(2) 7(1) 8(3) 9(9)
--
Operation: upVote(2)
Current heap (10 nodes)
 (1,9) (7,6) (6,5) (8,6) (4,6) (5,3) (2,2) (3,4) (0,3) (9,3)
Current index array (10 cells used)
 0(8) 1(0) 2(6) 3(7) 4(4) 5(5) 6(2) 7(1) 8(3) 9(9)
--
Operation: downVote(3)
Current heap (10 nodes)
 (1,9) (7,6) (6,5) (8,6) (4,6) (5,3) (2,2) (3,3) (0,3) (9,3)
Current index array (10 cells used)
 0(8) 1(0) 2(6) 3(7) 4(4) 5(5) 6(2) 7(1) 8(3) 9(9)
--
Operation: delete(1)
Current heap (9 nodes)
 (7,6) (8,6) (6,5) (9,3) (4,6) (5,3) (2,2) (3,3) (0,3)
Current index array (10 cells used)
 0(8) 1(-1) 2(6) 3(7) 4(4) 5(5) 6(2) 7(0) 8(1) 9(3)
--
Operation: insert(6)
Current heap (10 nodes)
 (7,6) (8,6) (6,5) (9,3) (4,6) (5,3) (2,2) (3,3) (0,3) (10,6)
Current index array (11 cells used)
 0(8) 1(-1) 2(6) 3(7) 4(4) 5(5) 6(2) 7(0) 8(1) 9(3)
 10(9)
--
Operation: upVote(8)
Current heap (10 nodes)
 (8,7) (7,6) (6,5) (9,3) (4,6) (5,3) (2,2) (3,3) (0,3) (10,6)
Current index array (11 cells used)
 0(8) 1(-1) 2(6) 3(7) 4(4) 5(5) 6(2) 7(1) 8(0) 9(3)
 10(9)
--

