CS21003 Algorithms I, Autumn 2013-14

Class test 2

Maximum marks: 20 Time: 14-Nov-2013 Duration: 1 hour

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precisew@lquestions].

1. You are given an arraj of n positive integers, each having bit-lengthl. Propose arD(nl/logn)-time
algorithm to sortA. (20)

Solution Lett = [log,n]. We perform radix sort with respect to the radi= 2. We haven = 2/°%" < R= 209" <
210%2+1 — 2n, that is,R= ©(n). Counting sort with respect to each digit take@ -+ R), that is,0(n) time. The
total number ofR-ary digits to be considered j$/t] = ©(l/logn). Therefore, the running time of this radix
sort onAis O(nl/logn). Extracting theR-ary digits of all the elements & can also be done in the same time.

— Page 1 of4 —

2. Let T be a string of lengtim. The prefix tableof T is an arrayP[0...m— 1] such thaP[k| stores the length
of the longest common prefix df[k...m—1] andT (for eachk in the range 6< k < m—1). Propose an
algorithm to compute the prefix takieof T, given only the failure function table[0...m— 1] for T. Notice
thatT itself is notprovided as an input to your algorithm—orfiyandm are supplied. What is the running
time of your algorithm? (10)

Solution We clearly haveP[0] = m. So suppose that we want to compig] for 1 < k< m—1. Leta be the longest
common prefix ofT andT[k...m— 1]. The following figure demonstrates thatmust be a proper border of
T[O...i]. The problem is thatr need not be the longest proper bordeiTd®...i]. Nevertheless, any proper
border (likea) can be obtained from the longest proper border by iterahiedailure functior. In the code
that follows, j stands for the length af.

int rcalcpfxtbl (int *F, int m)
{

int =P

int i, j;

/+= Allocate nmenory and initialize the prefix table */
P = (int *)malloc(m* sizeof(int));
P[O] = m for (i=1; i<m ++i) P[i] = O;

/* Look at the failure function table. In order that we di scover |onger borders
earlier, we look at F[i] values in the decreasing sequence of i. */
for (i =m1;, i >0; --i) {

/+ Look at all non-enpty proper borders of T[O...i]. Let k =i-j+1. If P[k]
is non-zero, it is assigned this value in an earlier iteration. Since
earlier iterations handle larger i, P[k] (if set) is not overwitten. x/

jo=Fil;

while (j > 0) {
if (Pli-j+1] == 0) Pli-j+1] =j;
io=Fli-11;

}

}

return P;

}

The running time of this algorithm is dominated by the inndriles loop. For any given, the number of

iterations in this loop is the numbdx of non-empty proper borders @f[0...i]. The running time of the
m-1

algorithm isO (21 bi>. In the worst case (think about strings lik& or alba?), this can beQ(n?). For
i=

random strings, eadh is expected to be small, provided that the string alphabeds at least two symbols.

More precisely, ifs = ||, thenT[0...i] has a proper border of lengihwith probability 1/s! (for j < i/2).

In the random case, we expect closedm)-time performance of this algorithm. A worst-ca@¢ém)-time
algorithm may exist, but | do not know. The following stringrdonstrates that we cannot prematurely break
the inner while loop whenever son® — j + 1] is found to be non-zero. We cannot break even when we see
an arbitrarily long sequence of non-zé?p — j 4 1] values in consecutive iterations of the loop.

abacabadeabacabad fabacabadeabacabadgabacabadeaxhtalbacabadeabacabad

There exist worst-case(m)-time algorithms to compute from T, but our current problem is different.

— Page 2 of4 —

For rough work and leftover answers

— Page 30of4 —

For rough work and leftover answers

— Page 4of4 —

