
CS21003 Algorithms I, Autumn 2012–13

Mid-semester Test

Maximum marks: 34 Time: 25-Sep-2012 Duration:2 hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. Write brief answers (one or two sentences each) to the following six parts. (2×6)

(a) Suppose that the running timeT (n) of a recursive algorithm is an increasing function of the input size
n, and satisfies the recurrenceT (n) = 10T (n/3) + Θ(n2) whenevern is a power of three. FindT (n) as
Θ(f(n)) for some simple functionf(n).

Θ(nlog3 10) (sincelog3 10 > log3 9 = 2)

(b) What is the minimum number of nodes in an AVL tree of height three?

F3+3 − 1 = F6 − 1 = 8− 1 = 7 (using the standard formula for Fibonacci trees)

(c) What is the maximum number of nodes in an AVL tree of height three?

1 + 2 + 22 + 23 = 15 (this is the full binary tree of height three)

(d) You are given a sorted arrayA of sizen. For simplicity, assume thatn is a power of three. You want
to find whether a valuea is present inA. You first compute the two indicesM1 = n/3 andM2 = 2n/3.
If a < A[M1], recursively search fora in A[0 . . .M1 − 1], else ifa < A[M2], recursively search fora
in A[M1 . . .M2 − 1], else recursively search fora in A[M2 . . . n − 1]. This is called theternary search
algorithm. Write the recurrence for the running time of this algorithm.

T (n) = T (n/3) + Θ(1)

(e) What is the number of comparisons made by the ternary search algorithm of Part (d) in the worst case?

2 log3 n+ 1 (two comparisons in each iteration and a final check for equality outside the loop)

(f) Prove or disprove: The minimum value of a max-heap must be found in a leaf node. (Assume that the
values stored in the heap are distinct from one another.)

True. A non-leaf node has at least one child storing a strictly smaller value.

— Page 1 of 6 —

2. You are given a max-heap ofn elements in the contiguous array representation. Your task is to create a
binary tree storing the same heap in the standard pointer-based representation. Write aΘ(n)-time function
to perform this task. (6)

Solution The following recursive function performs this task. We assume that we maintain only the left and right child
pointers in each node of the output tree.

treenode *heap2tree (int *A, int n, int i)

{

treenode *p;

if (i >= n) return NULL;

p = (treenode *)malloc(sizeof(treenode));

p -> value = A[i];

p -> left = heap2tree(A,n,2*i+1);

p -> right = heap2tree(A,n,2*i+2);

return p;

}

The outermost call should be at the root:

T = heap2tree(A,n,0);

— Page 2 of 6 —

Roll no: Name:

3. You are given an arrayA of n non-zero floating-point numbersa0, a1, a2, . . . , an−1. Let P be the product
of all the elements ofA, that is,P = a0a1a2 · · · an−1, andbi = P/ai = a0 · · · ai−1ai+1 · · · an−1 for
i = 0, 1, 2, . . . , n − 1. You want to compute an arrayB storing b0, b1, b2, . . . , bn−1. You are writing
the code for a mobile phone whose processor is so primitive that floating-point division operations are not
permitted. You are also not allowed to use any math library call (likepow(A[i],-1)). Write anO(n logn)-
time algorithm for solving the problem assuming that addition, subtraction, multiplication, comparison
and assignment are the only allowed operations (on integers and floating-point numbers). Deduce that
the running time of your algorithm isO(n log n). (6)

Solution We use the following divide-and-conquer approach to solve this problem. Here, we assume that the mobile
phone supports pointer arithmetic. If not, the following code can be easily rewritten by passing the start and
last indices in a subarray.

void mobAppl (float *A, int n, float *B)

{

int i, m, M;

float s, t;

if (n == 1) { B[0] = 1; return; }

/* Compute m = n / 2 (floor) without the division */

m = M = 0; while (M <= n - 2) { ++m; ++M; ++M; }

mobAppl(A, m, B);

mobAppl(A + m, n - m, B + m);

s = A[0] * B[0]; /* We have s = a0a1 · · · am−1 */

t = A[m] * B[m]; /* We have t = amam+1 · · · an−1 */

for (i = 0; i < m; ++i) B[i] *= t;

for (i = m; i < n; ++i) B[i] *= s;

}

If T (n) denotes the running time of this algorithm on an array of sizen, we have

T (n) =

{

Θ(1) if n = 1
2T (n/2) + Θ(n) if n > 2

whenevern is a power of two. By the master theorem for divide-and-conquer recurrences, we haveT (n) =
Θ(n log n).

— Page 3 of 6 —

4. A bipartite graph is a (simple) undirected graphG = (V,E) whose vertex setV can be partitioned in two
disjoint subsetsV1 andV2 such thatV = V1 ∪ V2 , no two vertices inV1 are connected by an edge, and no
two vertices inV2 are connected by an edge. You are given a connected bipartite graph(V,E), but the sets
V1 andV2 are not supplied to you. Design an efficient algorithm to computeV1 andV2. Deduce the running
time of your algorithm. Also prove the correctness of your algorithm. (10)

Solution Let us name the vertices ofG as0, 1, . . . , n − 1. We assume that the graphG is supplied in the adjacency-list
representation, that is, we can retrieve all the neighbors of any nodev in time proportional to the number of
neighbors ofv. We letm denote the number of edges inG. SinceG is connected and bipartite, we have
n − 1 6 m 6 n2/4. The following pseudocode builds the partsV1 andV2 iteratively. An arrayincluded
indexed byV shows which vertices are already included in the partsV1 or V2 (0 meansnot included, 1 means
included in V1, and2 meansincluded in V2). A queueQ of unprocessed vertices is maintained.

Set Q = (0), V1 = {0}, V2 = ∅, and included[i] = 1.

For i = 1, 2, . . . , n− 1, set included[i] = 0.

While (Q is not empty) {

Let u be the front of Q, and set Q = DEQUEUE(Q).

For each neighbor v of u {

If (included[v] equals 0) {

Decide the part for v by setting i = 3 − included[u].

Set Vi = Vi ∪ {v}, included[v] = i, and Q = ENQUEUE(Q, v).

}

}

}

Running time: The initialization takesΘ(n) time. We assume that each basic operation on the queueQ can
be done inO(1) time. Since each vertex is enqueued once and dequeued once, the total effort associated with
the queueQ is Θ(n). Under the adjacency-list representation ofG, the remaining task in theWhile loop
takesΘ(m) time (wherem is the number of edges inG). So the total running time of the above algorithm is
O(n+m) = O(|V |+ |E|).

Correctness:A bipartite graph cannot contain a cycle of odd length. For example, if(v0, v1, v2, . . . , v2k) is a
cycle in a bipartite graphG, thenv0, v2, v4, . . . , v2k must belong to one part, andv1, v3, v5, . . . , v2k−1 in the
other part. But then, there is an edge betweenv0 andv2k, a contradiction.

Suppose thatv andv′ are included inV2 by the above algorithm as neighbors ofu andu′ in V1, respectively.
There exist intermediate verticesu1, u2, . . . , uk in V1 andv1, v2, . . . , vk in V2 such thatvi is included as a
neighbor ofui for i = 0, 1, 2, . . . , k + 1, andui+1 is included as a neighbor ofvi for i = 0, 1, 2, . . . , k, where
we have renamedu = u0, u′ = uk+1, v = v0 andv′ = vk+1. (If u1 = u2, thenk = 0.) If G contains the
edge(v, v′), then(v0, u1, v1, u2, v2, . . . , uk+1, vk+1) is a cycle of odd length inG, that is,G is not bipartite.
So there cannot exist an edge between two vertices included in V2. Likewise, we can prove that there cannot
exist an edge between two vertices included inV1.

Finally, note that sinceG is connected, each vertex inV is included in eitherV1 or V2.

— Page 4 of 6 —

Roll no: Name:

For rough work and leftover answers

— Page 5 of 6 —

For rough work and leftover answers

— Page 6 of 6 —

