
CS21003 Algorithms – I, Autumn 2012–13

End-semester Test

Maximum marks: 55 Time: 20-Nov-2012 (AN) Duration:3 hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. A point P in the two-dimensional plane is said todominateanother pointQ if their x- andy-coordinates
satisfy the conditions:x(P) > x(Q) andy(P) > y(Q). A maximal pointin a collectionC of n points
P1, P2, . . . , Pn is a pointPi which is not dominated by any other pointPj in the collection.

(a) Demonstrate by an example that a collection may have multiple maximal points. (5)

Solution All the points in the collection(1, n), (2, n− 1), (3, n− 2), . . . , (n, 1) are maximal.

(b) Propose a worst-caseO(n log n)-time algorithm to computeall the maximal points in a given collection
C of n points. For simplicity, assume that the points inC do not have equalx- or y-coordinates. (5)

Solution The steps of the algorithm are described below.

1. Sort the input points in the decreasing order of theiry-coordinates. Rename this sorted list asP1, P2, . . . , Pn.
2. Print “P1 is a maximal point”.
3. SetM = P1.
4. Fori = 2, 3, 4, . . . , n (in that order), repeat:{
5. If (x(Pi) > x(M)), then:{
6. Print “Pi is a maximal point”.
7. SetM = Pi.
8. } /* End of if */
9. } /* End of for */

Step 1 of this algorithm takesO(n log n) time. The remaining part of the algorithm takesΘ(n) time.

— Page 1 of 8 —

(c) All the maximal points inC constitute a subcollectionC1 called thefirst maximal layerof C. All the
maximal points inC \ C1 constitute another subcollectionC2 called thesecond maximal layerof C. In
general, ifC1, C2, . . . , Ck are the firstk maximal layers ofC, then the(k + 1)-st maximal layerof C is

the setCk+1 of all maximal points inC \
k⋃

i=1

Ci. Using an appropriate reduction algorithm, prove that no

algorithm can compute the maximal layers of a collectionC of n points ino(n log n) time in the worst case.(5)

Solution We reduce the problem of sorting to the problem of computing maximal layers. LetA = [a1, a2, . . . , an] be
an array (of integers or floating-point numbers), that we want to sort. We assume that the elementsai are
distinct from one another. We generaten pointsP1, P2, P3, . . . , Pn, wherePi = (−ai,−ai) for all i. We run
an algorithmH for computing the maximal layers of the collection of thesen points. The smallestai gives the
first maximal layer consisting of the only pointPi. If aj is the second smallest element inA, then the second
maximal layer consists of the only pointPj , and so on. In particular, ifH outputsPi1 , Pi2 , . . . , Pin , then the
sorted version ofA is ai1 , ai2 , . . . , ain , whereaij = −x(Pij).

Clearly, the reduction algorithm runs inΘ(n) time. Therefore, ifH runs ino(n log n) time in the worst case,
we get a worst-caseo(n log n)-time algorithm for sortingA. On the contrary, we know that any (comparison-
based) sorting algorithm must takeΩ(n log n) time in the worst case.

— Page 2 of 8 —

Roll no: Name:

2. Let us insert the (distinct) integersa1, a2, . . . , an in that sequence in an initially empty binary search tree. We
use the standard insertion procedure without height balancing. We knowthat if the integersa1, a2, . . . , an
appear in sorted order (increasing or decreasing), the resulting binary search tree is of maximum possible
heightn− 1, and the insertion of all then items takesΘ(n2) running time.

(a) Demonstrate by an example that even an unsorted sequence may result in a binary search tree having
the maximum possible height. Taken = 5. (5)

Solution Insertion of the integers9, 3, 5, 8, 7 in an initially empty binary search tree
gives the adjacent tree of height5− 1 = 4.

9

3

5

8

7

(b) You are given a sequence of integersa1, a2, . . . , an in an array. You need to decide whether inserting
these integers in that sequence leads to a height ofn − 1 of the binary search tree. Propose a worst-case
O(n)-time algorithm to solve the problem. Note that if you actually build the tree, you endup in aΘ(n2)
running time in the worst case. (5)

Solution In order that we get a chain of lengthn− 1, we need each non-leaf node to have only one child. This limits the
allowed values ofai given thata1, a2, . . . , ai−1 have already resulted in a binary search tree of heighti − 2.
For example, ifa2 < a1, thena2 is inserted as the left child of the roota1. But then, the root cannot have a
right child, that is, none ofa3, a4, . . . , an can be larger thana1. The following pseudocode implements these
observations.

1. If (n 6 2), returntrue.
2. Initialize lower limit = −∞ andupper limit = +∞.
3. Fori = 2, 3, 4, . . . , n, repeat:{
4. If (ai < lower limit) or (ai > upper limit), returnfalse.
5. If (ai < ai−1), setupper limit = ai−1.
6. If (ai > ai−1), setlower limit = ai−1.
7. } /* End of for */
8. Returntrue.

— Page 3 of 8 —

3. (a) Design a worst-caseO(n)-time algorithm to generate a random permutation of0, 1, 2, . . . , n− 1. (5)

Solution The following algorithm assumes that a random integer in therange0, 1, 2, . . . ,m−1 can be computed inO(1)
time for any positive integerm.

1. Initialize an arrayP of sizen asP [i] = i for all i = 0, 1, 2, . . . , n− 1.
2. Fori = 0, 1, 2, . . . , n− 2, repeat:{
3. Letj be a random integer in the range0, 1, 2, . . . , n− i− 1.
4. SwapA[i] with A[i+ j].
5. } /* End of for */
6. ReturnP .

(b) Now, your task is to generate a random undirectedconnectedgraph withn vertices andm edges (n and
m are supplied to you, we must havem > n − 1). Propose an efficient algorithm for solving this problem.
Analyze the worst-case running time of your algorithm. (5)

Solution Let us name the vertices as0, 1, 2, . . . , n − 1. We first compute a random spanning tree on these vertices. We
then randomly add the remainingm − n + 1 edges. In order that a random edge is not repeatedly chosen for
addition to the graph, we use a strategy similar to Part (a).

1. Initialize the edge setE to be empty.
2. Compute inP a random permutation of0, 1, 2, . . . , n− 1 (use Part (a)).
3. Fori = 1, 2, 3, . . . , n− 1, repeat:{
4. Compute a random integerj in the range0, 1, 2, . . . , i− 1.
5. Add the edge(P [i], P [j]) toE.
6. } /* End of for */
7. Store in a listL all possible edges betweenn vertices.
8. Delete fromL the edges that are already added toE.
9. Let the size ofL bes (in fact,s = n(n−1)

2 − (n− 1) = (n−1)(n−2)
2 at this moment).

10. While(|E| < m), repeat:{
11. Choose a random integerj in the range0, 1, 2, . . . , s− 1.
12. Add thej-th edge in the listL toE.
13. Delete thej-th edge fromL (and decrease the size ofL by 1).
14. } /* End of while */
15. ReturnE.

By Part (a), a random permutationP can be computed inΘ(n) time. Thefor loop (Lines 3–6) computes a
random spanning tree inΘ(n) time. Subsequently, we initialize the listL (Lines 7–9) inΘ(n2) time. Thewhile
loop is executedm − n + 1 times. Each iteration of the loop can be done inΘ(1) time (for example, ifL is
implemented as an array as in Part (a)). Sincem = O(n2), the running time of the above algorithm isΘ(n2).

— Page 4 of 8 —

Roll no: Name:

4. LetG = (V,E) be a connected undirected graph with each edge(u, v) ∈ E carrying a costc(u, v).

(a) A maximum spanning treeof G is a spanning treeT of G such that the sum of the costs of the edges
in T is as large as possible. Modify Kruskal’s algorithm to compute a maximum spanning tree ofG. Write
only the modifications (not the entire Kruskal algorithm). What is the running timeof your algorithm? (5)

Solution One possibility is to convert the given graphG to another weighted graphG′ on the same vertex and edge sets
asG but with the edge costs redefined asc′(u, v) = −c(u, v). We run the original Kruskal algorithm onG′.

Another possibility is to sort the edges inE in the decreasing order of their costs, and run the original Kruskal
algorithm on this edge list. That means that Kruskal’s algorithm will now attempt to add edges in the decreasing
sequence of their costs.

Both the above variants perform essentially the same task. In other words, apart from ties, both the variants
perform exactly the same sequence of edge-addition attempts. Clearly, a maximum spanning tree inG is a
minimum spanning tree inG′.

The input can be modified (to getG′) in O(|E|) time. The second variant changes the sorting order from
increasing to decreasing. Therefore, the running time of either variant isO(|E| log |V |).

(b) A bottleneck edgein a spanning treeT of G is an edge inT with the largest cost among the edges in
T . A maximum bottleneck spanning treeof G is a spanning tree ofG such that the bottleneck edge inT is
of cost as large as possible. Propose a worst-caseO(|E|)-time algorithm to compute a maximum bottleneck
spanning tree ofG. (5)

Solution Let c∗ be the maximum cost of an edge inE. Any maximum bottleneck spanning tree will contain an edgee of
costc∗.

If we run the modified Kruskal algorithm of Part (a), the maximum spanning tree will contain an edgee of
the maximum costc∗. Indeed, such an edge is the first to be added to the spanning tree. However, this takes
O(|E| log |V |) running time.

In order to achieveO(|E|) running time, we may generate any spanning tree ofG, containing an edgee of the
maximum costc∗. In particular, we may run a BFS or DFS traversal onG from one of the endpoints ofe. We
also make sure thate is an edge in the BFS or DFS tree generated by our traversal. Since such a traversal takes
O(|E|+ |V |) time, |E| > |V |−1, and the maximum costc∗ and an edgee of this cost can be located inO(|E|)
time, this traversal-based algorithm runs inO(|E|) time.

— Page 5 of 8 —

5. Let G = (V,E) be an undirected graph with a positive costc(u, v) associated with each edge(u, v) ∈ E.
For u, v ∈ V , let d(u, v) be the cost of a shortestu, v path. Theeccentricityof a vertexu ∈ V is defined
asǫ(u) = max

v∈V
d(u, v). The set of vertices inG having the minimum eccentricity is called thecenterof G,

denotedC(G).

(a) Find the eccentricities of all the vertices in the following undirected graph. Assume that each edge
has cost1 (so the distanced(u, v) is thelengthof the shortestu, v path). Write the eccentricities inside the
circles representing the vertices. Identify the center ofG. (5)

C(G) = {e, f, g}
a

d

b

c e

f

g

h

i

j

5

4

4

5

3

3

3

4

5

4

(b) Propose an efficient algorithm to compute the center ofG. What is the running time of your algorithm?(5)

Solution Run the Floyd-Warshall algorithm onG. The final matrixD(n−1) computed by this algorithm reveals the center
of G. More precisely, the eccentricity of vertexi is the maximum entry in thei-th row ofD(n−1). Then, we
locate the minimum eccentricity, and report all vertices with this minimum eccentricity.

The Floyd-Warshall algorithm takesΘ(n3) time. The eccentricities of all vertices can be computed inΘ(n2)
time. The minimum eccentricity can be computed and the vertices with this minimum eccentricity can be
identified inΘ(n) time. Thus, the overall running time of this algorithm isΘ(n3).

Note that ifG is not connected, the eccentricity of each vertex is∞, andC(G) is the entire vertex set ofG. The
above algorithm will work for this case too. Nevertheless itmakes sense to talk about the center of connected
graphs only.

— Page 6 of 8 —

Roll no: Name:

For rough work and leftover answers

— Page 7 of 8 —

For rough work and leftover answers

— Page 8 of 8 —

