CS21003 Algorithms — I, Autumn 2012-13

End-semester Test

Maximum marks: 55 Time: 20-Nov-2012 (AN) Duratio®hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief and preciseAnswer all questions.]

1. A point P in the two-dimensional plane is said dominateanother point) if their z- andy-coordinates
satisfy the conditionsz(P) > z(Q) andy(P) > y(Q). A maximal pointin a collectionC' of n points
P, P, ..., P,isapointP; which is not dominated by any other poiff in the collection.

(&) Demonstrate by an example that a collection may have multiple maximal points. (5)

Solution All the points in the collectioril, n), (2,n — 1), (3,n — 2),...,(n, 1) are maximal.

(b) Propose aworst-cas®n log n)-time algorithm to computell the maximal points in a given collection
C of n points. For simplicity, assume that the point<irdo not have equat- or y-coordinates. (5)

Solution The steps of the algorithm are described below.

1. Sortthe input points in the decreasing order of theipordinates. Rename this sorted lisfasr, . . ., P,.
2. Print “P; is a maximal point”.

3. SetM = P;.

4. Fori=2,3,4,...,n(in that order), repeat

5. If (x(P;) =2 x(M)), then:{

6. Print “P; is a maximal point”.

7 SetM = P,.

8. } I* End of if */

9. } /* End of for */

Step 1 of this algorithm take3(n log n) time. The remaining part of the algorithm takesn) time.

— Page 1 of8 —

(c) All the maximal points inC' constitute a subcollectiofi; called thefirst maximal layenf C. All the
maximal points inC' \ C; constitute another subcollectid@r, called thesecond maximal layesf C. In

general, ifCy,Cs, ..., Cy are the firstc maximal layers ofC, then the(k + 1)-st maximal layenof C is
k

the setCy; of all maximal points inC' \ U C;. Using an appropriate reduction algorithm, prove that no

=1
algorithm can compute the maximal layers of a collectibaf n points ino(n log n) time in the worst case(5)

Solution We reduce the problem of sorting to the problem of computimgimal layers. Letd = [ay, as,...,a,] be
an array (of integers or floating-point numbers), that we twarsort. We assume that the elemeatsare
distinct from one another. We generai@oints Py, Py, Ps, ..., P,, whereP, = (—a;, —a;) for all i. We run

an algorithmH for computing the maximal layers of the collection of theggoints. The smallest; gives the
first maximal layer consisting of the only poif. If a; is the second smallest elementdn then the second
maximal layer consists of the only poif, and so on. In particular, iff outputsp;,, P; ., P, , then the
sorted version ofl is a;, , a;,, . . . , a;,, wherea;, = —x(F;).

29 -

Clearly, the reduction algorithm runs &(n) time. Therefore, i runs ino(nlogn) time in the worst case,
we get a worst-case(n log n)-time algorithm for sortingd. On the contrary, we know that any (comparison-
based) sorting algorithm must tak&n log) time in the worst case.

— Page 2 of 8 —

Roll no: Name:

2. Letusinsertthe (distinct) integets, as, . . . , a,, in that sequence in an initially empty binary search tree. We
use the standard insertion procedure without height balancing. We tawf the integersi;, as, ..., a,
appear in sorted order (increasing or decreasing), the resulting/lsearch tree is of maximum possible
heightn — 1, and the insertion of all the items takesd(n?) running time.

(@) Demonstrate by an example that even an unsorted sequence may resuftdnyasbarch tree having

the maximum possible height. Take= 5. ®)
(9
©
Solution Insertion of the integers, 3, 5, 8, 7 in an initially empty binary search tree (5)
gives the adjacent tree of height- 1 = 4. ©
@
(b) You are given a sequence of integersas, ..., a, in an array. You need to decide whether inserting

these integers in that sequence leads to a height-ofl of the binary search tree. Propose a worst-case
O(n)-time algorithm to solve the problem. Note that if you actually build the tree, yowserid a©(n?)
running time in the worst case. (5)

Solution In order that we get a chain of length— 1, we need each non-leaf node to have only one child. Thisdithi
allowed values ofi; given thataq, as, ..., a;,_1 have already resulted in a binary search tree of heighg.
For example, ifas < a1, thenas is inserted as the left child of the roet. But then, the root cannot have a
right child, that is, none ofi3, a4, .. ., a, can be larger than,. The following pseudocode implements these
observations.

1. If (n < 2), returntrue.

2. Initialize lower_limit = —oo andupper_limit = +o0.

3. Fori=2,3,4,...,n, repeat{

4. If (a; < lower_limit) or (a; > upper_limit), returnfalse
5. If (a; < a;—1), Setupper _limit = a;_;.

6. If (a; > a;—1), setlower_limit = a;_1.

7. } I*End of for */

8. Returntrue.

— Page 30f8 —

3. (a) Design a worst-case(n)-time algorithm to generate a random permutation,df 2, ...,n — 1.)

Solution The following algorithm assumes that a random integer indinge0, 1, 2, ..., m — 1 can be computed i@ (1)
time for any positive integer.

1. Initialize an arrayP of sizen asP[i] =i foralli =0,1,2,...,n — 1.
2. Fori=0,1,2,...,n — 2, repeat:{

3 Letj be a random integer in the ranggel, 2, ..., n —i — 1.

4. SwapA[i] with Az + j].

5. } /* End of for */

6. ReturnP.

(b) Now, your task is to generate a random undirect@ohectedjraph withn vertices andn edges+{ and
m are supplied to you, we must hawe > n — 1). Propose an efficient algorithm for solving this problem.
Analyze the worst-case running time of your algorithm. (5)

Solution Let us name the vertices 8s1,2,...,n — 1. We first compute a random spanning tree on these vertices. We
then randomly add the remainimg — n + 1 edges. In order that a random edge is not repeatedly chosen fo
addition to the graph, we use a strategy similar to Part (a).

1. Initialize the edge sdf to be empty.

2. Compute inP a random permutation @f 1,2,...,n — 1 (use Part (a)).
3. Fori=1,2,3,...,n— 1, repeat{

4, Compute a random integgin the range), 1,2, ...,¢ — 1.

5. Add the edgéPJi], P[j]) to E.

6. } /* End offor */

7. Store in alist. all possible edges betweernvertices.

8. Delete fromL the edges that are already addedtto

9. Letthe size of bes (in fact, s = @ —(n—1)= % at this moment).
10. While(|E| < m), repeat{
11. Choose a random integemn the range), 1,2,...,s — 1.
12. Add thej-th edge in the list. to E.
13. Delete theg-th edge fromL (and decrease the size biby 1).
14. } /* End of while*/
15. Returnk.

By Part (a), a random permutatidh can be computed i®(n) time. Thefor loop (Lines 3—6) computes a
random spanning tree i (n) time. Subsequently, we initialize the list(Lines 7-9) in©(n?) time. Thewhile
loop is executedn — n + 1 times. Each iteration of the loop can be doneifl) time (for example, ifL is
implemented as an array as in Part (a)). Simce- O(n?), the running time of the above algorithm@gn?).

— Page 4 of 8 —

Roll no: Name:

4. LetG = (V, E) be a connected undirected graph with each €dge) € E carrying a cost(u, v).

(&) A maximum spanning treaf GG is a spanning tre&’ of G such that the sum of the costs of the edges
in T'is as large as possible. Modify Kruskal’s algorithm to compute a maximum sgatree ofG. Write
only the modifications (not the entire Kruskal algorithm). What is the running ¢ifyeur algorithm?)

Solution One possibility is to convert the given grapghto another weighted graph’ on the same vertex and edge sets
asG but with the edge costs redefinedd@:, v) = —c(u, v). We run the original Kruskal algorithm a@’.

Another possibility is to sort the edges inin the decreasing order of their costs, and run the origimasKal
algorithm on this edge list. That means that Kruskal’s athor will now attempt to add edges in the decreasing
sequence of their costs.

Both the above variants perform essentially the same taskther words, apart from ties, both the variants
perform exactly the same sequence of edge-addition ateen@iearly, a maximum spanning tree Ghis a
minimum spanning tree i6"'.

The input can be modified (to gét’) in O(|E|) time. The second variant changes the sorting order from
increasing to decreasing. Therefore, the running timetb&ewvariant iSO (| E| log | V).

(b) A bottleneck edgen a spanning tre& of GG is an edge irl” with the largest cost among the edges in
T. A maximum bottleneck spanning trekG is a spanning tree af such that the bottleneck edgeThis

of cost as large as possible. Propose a worst-C&s€|)-time algorithm to compute a maximum bottleneck
spanning tree of;. (5)

Solution Let ¢* be the maximum cost of an edgeih Any maximum bottleneck spanning tree will contain an eelgé
costc*.

If we run the modified Kruskal algorithm of Part (a), the maxim spanning tree will contain an edgeof
the maximum cost*. Indeed, such an edge is the first to be added to the spanemgHiowever, this takes
O(|E|log [V]) running time.

In order to achievé)(| E|) running time, we may generate any spanning tre€,afontaining an edge of the
maximum cost*. In particular, we may run a BFS or DFS traversal@®@ifrom one of the endpoints ef We
also make sure thatis an edge in the BFS or DFS tree generated by our traversede Such a traversal takes
O(|E|+|V|) time,|E| > |V|—1, and the maximum cost and an edge of this cost can be located ®(|E|)
time, this traversal-based algorithm rungO E|) time.

— Page50f8 —

5. Let G = (V, E) be an undirected graph with a positive co@t, v) associated with each edge, v) € E.
Foru,v € V, letd(u,v) be the cost of a shortest v path. Theeccentricityof a vertexu € V' is defined
ase(u) = max d(u,v). The set of vertices i’ having the minimum eccentricity is called thenterof G,

denoted”(G).

(@) Find the eccentricities of all the vertices in the following undirected graplsude that each edge
has cost (so the distancé(u, v) is thelengthof the shortest:, v path). Write the eccentricities inside the
circles representing the vertices. Identify the center of)

b

f
tq
e e C(G) = {e, f. g}
0RO
()

(b) Propose an efficient algorithm to compute the cent&r.diVhat is the running time of your algorithm(®)

Solution Run the Floyd-Warshall algorithm a#. The final matrixD("~1) computed by this algorithm reveals the center
of G. More precisely, the eccentricity of vertéxs the maximum entry in théth row of D(*~1). Then, we
locate the minimum eccentricity, and report all verticefhwtiis minimum eccentricity.

The Floyd-Warshall algorithm taked(n?) time. The eccentricities of all vertices can be compute@ {n?)
time. The minimum eccentricity can be computed and the aestivith this minimum eccentricity can be
identified in©(n) time. Thus, the overall running time of this algorithnmAgn?).

Note that ifG is not connected, the eccentricity of each vertexisandC'(G) is the entire vertex set @f. The
above algorithm will work for this case too. Neverthelessitkes sense to talk about the center of connected
graphs only.

— Page 6 of 8 —

Roll no: Name:

For rough work and leftover answers

— Page 7 0of 8 —

For rough work and leftover answers

— Page 8 0of8 —

